Refine Your Search

Topic

Search Results

Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

Active Interior Noise Control for Passenger Vehicle Using the Notch Dual-Channel Algorithms with Two Different Predictive Filters

2021-02-18
2020-01-5228
Active control of low-frequency engine order noise helps to improve the passenger’s sense of hearing, so it has become one of the hot topics in the automotive field. Depth improvement of active noise control (ANC) performance from the perspective of novel algorithms has attracted the attention of researchers. The conventional notch dual-channel filtered-x least mean square (NDFxLMS) algorithm shows acceptable noise reduction for the elimination of engine order noise. To further enhance the steady-state ANC effect, this paper proposed two new notch algorithms: the notch dual-channel filtered-x recursive least square (NDFxRLS) algorithm and the notch dual-channel affine projection (NDAP) algorithm. Vehicle simulation tests show that both the proposed algorithms, especially the NDFxRLS algorithm, have a satisfying performance for the cancellation of interior noise from the engine.
Technical Paper

Active Noise Control Method Considering Auditory Characteristics

2012-04-16
2012-01-0993
In contrast to functionality and reliability, which are more and more assumed to be a natural and necessary condition of any vehicle, the performance of Noise, Vibration and Harshness (NVH) now belongs to those features which play an essential role for the customer's purchasing decision. Sound design and vehicle interior noise control are essential parts of NVH. One tool of the NVH solution toolbox is Active Noise Control (ANC). ANC technology aims to cancel unwanted noise by generating an “anti-noise” with equal amplitude and opposite phase. Owing to the fact that human hearing has selective sensitivity for different critical bands, a new control strategy of ANC, which selectively controls the noise of specific bandwidths according to the result of specific loudness and retains the part of noise created by the normal running of facilities, trying to attenuate the unwanted and unacceptable noise, has been proposed in this paper.
Technical Paper

Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors

2019-01-14
2019-01-5004
Numerical simulations on the fluid-structure interaction were conducted using commercial software STAR-CCM+ and ABAQUS. The aeroelastic responses of a deflector under several different working conditions were simulated utilizing finite volume and finite element methods to investigate the aeroelastic problem of automotive deflectors. Results showed that the structural response of a top deflector is minimal under the influence of aerodynamics given its large structural stiffness. The size of the top deflector was optimised by using thickness as a variable. The volume and quality of the top deflector were significantly reduced, and its lightweight performance was improved to satisfy the stiffness performance requirement. The vibration of a side deflector structure was mainly induced by the turbulence on the structure surface. The amplitude of vibration was small and the vibration gradually converged in a few seconds without obvious regularity.
Technical Paper

Automobile Interior Noise Prediction Based on Energy Finite Element Method

2011-04-12
2011-01-0507
For the purpose of predicting the interior noise of a passenger automobile at middle and high frequency, an energy finite element analysis (EFEA) model of the automobile was created using EFEA method. The excitations including engine mount excitation and road excitation were measured by road experiment at a speed of 120 km/h. The sound excitation was measured in a semi-anechoic chamber. And the wind excitation was calculated utilizing numeric computation method of computational fluid dynamics (CFD). The sound pressure level (SPL) and energy density contours of the interior acoustic cavity of the automobile were presented at 2000 Hz. Meanwhile, the flexural energy density and flexural velocity of body plates were calculated. The SPL of interior noise was predicted and compared with the corresponding value of experiment.
Technical Paper

Balanced Suspension Thrust Rod Fatigue Life Prediction

2016-09-27
2016-01-8044
In order to predict the fatigue life of thrust rod heavy duty commercial vehicle balanced suspension, based on the continuum mechanics theory, the fatigue life prediction model of rubber with equivalent effect as damage parameter is established. Based on the equivalent stress and fatigue cumulative damage theory, the fatigue damage evolution equation of rubber material expressed by stress is derived by using the strain energy function. The general fatigue life model is established by using the maximum logarithmic principal strain as the damage parameter. The finite element model of the thrust rod is established, and the stress distribution of the spherical hinge rubber layer and the easy damage area are analyzed. Based on the equivalent stress calculation results and the axial tension stress and strain data of the rubber material, the accuracy of the results of the finite element calculation is verified.
Technical Paper

Combined Control Strategy for Engine Rotate Speed in the Shift Process of Automated Mechanical Transmission

2004-03-08
2004-01-0427
For the purpose of lessening fuel consumption, engine noise, shift jerk and clutch friction work in the shift process of Automatic Mechanical Transmission (AMT), a fuzzy-bang bang dual mode control strategy for engine rotate speed is put forward in this paper, which takes the advantages of time optimal control and fuzzy control. The combined control strategy is applied to the shift process control of AMT test minibus named SC6350 and proved to be successful by the experimental results.
Technical Paper

Commercial Vehicle's Longitudinal Deceleration Precise Control Considering Vehicle-Actuator Dynamic Characteristics

2024-04-09
2024-01-2313
The installation of the Electronic Braking System (EBS) could effectively improve braking response speed, shorten braking distance, and ensure driving safety of commercial vehicles. However, during longitudinal deceleration control process, the commercial vehicles face not only challenges such as large inertia mass and random road gradient resistance of the vehicle layer, but also non-linear characteristics of the EBS actuator layer. In order to solve these problems, this paper proposes a commercial vehicle’s longitudinal deceleration precise control strategy considering vehicle-actuator dynamic characteristics. First, longitudinal dynamics of commercial vehicle is analyzed, and so is the EBS’ non-linear response hysteresis characteristics. Then, we design the dual layer deceleration control strategy. In vehicle layer, the recursive least squares with forgetting factor and Kalman filtering are comprehensively applied to dynamically estimate the vehicle mass and driving road slope.
Technical Paper

Commercial Vehicles Thrust Rod Static and Dynamic Characteristics Analysis

2016-10-17
2016-01-2345
In order to study the static and dynamic characteristics of the thrust rod. Based on the multi-body dynamics theory, the dynamic model of the thrust rod and the vehicle system is established by using ADAMS software. The limit braking condition is simulated, and the limit braking load of the thrust rod is obtained. Thrust rod finite element model is established, the load calculation value and rubber test data as a finite element analysis of input conditions, using ABAQUS software to carry on the stiffness and strength analysis, analysis results show that the strength meets the requirement, and the stiffness and strength calculation result is in good agreement with the sample test, accurately describes the finite element model. The analytical method used can be used to predict the stiffness of the thrust rod.
Technical Paper

Development and Research on Control Strategy of Advanced Electronic Braking Systems for Commercial Vehicle

2014-09-30
2014-01-2285
Electronic braking system (EBS) of commercial vehicle is developed based on Anti-lock Braking System (ABS), for the purpose of enhancing the braking performance. Based on the previous study, this paper aims at the development and research on the control strategy of advanced electronic braking system for commercial vehicle, which mainly includes braking force distribution and multiple targets control strategy. In the study of braking force distribution control strategy, the mass of vehicle and the axle loads will be calculated dynamically and the braking force of each wheel will be distributed regarding to the axle loads. The braking intention recognition takes the brake pad wear into account when braking uncritically, so it can detect a difference in the pads between the front and the rear axles. The brake assist strategy supports the driver during emergency braking and the braking distance is shortened by the reduction of the braking system response time.
Technical Paper

Development and Verification of Electronic Braking System ECU Software for Commercial Vehicle

2013-11-27
2013-01-2736
Electronic braking system (EBS) of commercial vehicle is developed from ABS to enhance the brake performance. Based on the early development of controller hardware, this paper starts with an analysis of the definition of EBS. It aims at the software design of electronic control unit, and makes it compiled into the controller in the form of C language by the in-depth study about control strategy of EBS in different braking conditions. Designed controller software is divided into two layers. The upper control strategy includes the recognition algorithm of driver's braking intention, estimation algorithm of the vehicle state, conventional braking strategy which consists of the algorithm of deceleration control and braking force distribution, and emergency braking strategy which consists of the algorithm of brake assist control and ABS control.
Technical Paper

Development of Simulation Platform and Control Strategy of Electronic Braking System for Commercial Vehicles

2014-09-30
2014-01-2286
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS.
Technical Paper

Development of a Control Strategy and HIL Validation of Electronic Braking System for Commercial Vehicle

2014-04-01
2014-01-0076
This article focuses on the research of control algorithm and control logic for the pneumatic EBS (Electronic Braking System) of commercial vehicle. An overall technical program was proposed which develops conventional braking and emergency braking for commercial vehicle EBS. According to the overall scheme, the methods of vehicle state estimation and driver's braking intention were determined, modeling and simulation for key components of commercial vehicle EBS were then carried out. This lead to the development of deceleration control, braking force distribution, brake assist and ABS control. Simulation models for key components of EBS and control strategy were validated through hardware-in-the-loop simulation tests. Simulation results show that the control strategy improves vehicle braking stability and vehicle active safety.
Technical Paper

Electric Vehicle Interior Noise Contribution Analysis

2016-04-05
2016-01-1296
Noise excitation sources are different between electric vehicles and conventional vehicles due to their distinct propulsion system architecture. This work focuses on an interior noise contribution analysis by experimental measurements and synthesis approach using a methodology established based on the principle of noise path analysis. The obtained results show that the structure-borne noise from the tire-road excitation acts as a major contributor to the overall interior noise level, and the structure-borne noise from the power plant system contributes noticeably as well, whereas contributions from the electric motor and tire are relatively insignificant.
Technical Paper

Exterior Noise Source Identification and Contribution Analyses for Electric Vehicles

2016-04-05
2016-01-1324
The primary noise sources of electric vehicles differ from that of traditional vehicles due to the fundamental differences in their powertrain architecture. In this work, some exterior noise test methods for electric vehicles are briefly introduced first, which include a pass-by noise measurement method during acceleration on the proving ground as well as a similar measurement in a semi-anechoic room. The obtained results based on those two methods from a production electric vehicle are compared and analyzed. Then the mechanism of the source, path, and contribution is illustrated, and a model of path-source-contribution for electric vehicles is established. The model validation is subsequently carried out by correlating the calculated outcomes with the measured results under real operating conditions. Finally, by using the model, contribution analyses are carried out to identify the primary exterior noise sources.
Journal Article

Further Study of the Vehicle Rattle Noise with Consideration of the Impact Rates and Loudness

2020-04-14
2020-01-1261
With the prevalent trend of the pure electric vehicle, vehicle interior noise has been reduced significantly. However, other noises become prominent in the cabin. Especially, the BSR noise generated by friction between parts and the clearance between components become the elements of complaints directly affect the quality of vehicles. Currently, the BSR noises are subjectively evaluated by experts, and the noise samples are simply labeled as ‘qualified’ or ‘unqualified’. Therefore, it is necessary to develop an evaluation model to assess the BSR noise objectively. In this paper, we study the vehicle rattle noise intensively. Several types of rattle noise were recorded in a semi-anechoic room. The recorded signals were then processed in the LMS test lab. to extract the single impact segments. A pool of simulated signals with different impact rates (number of impacts per second) and various loudness was synthesized for analyzation.
Technical Paper

Global Off-Road Path Planning of Unmanned Ground Vehicles Based on the Raw Remote Sensing Map

2023-04-11
2023-01-0699
Unmanned Ground Vehicle (UGV) has a wide range of applications in the military, agriculture, firefighting and other fields. Path planning, as a key aspect of autonomous driving technology, plays an essential role for UGV to accomplish the established driving tasks. At present, there are many global path planning algorithms in grid maps on unstructured roads, while general grid maps do not consider the specific elevation or ground type difference of each grid, and unstructured roads are generally considered as flat and open roads. On the contrary, the unmanned off-road is always a bumpy road with undulating terrain, and meanwhile, the landform is complex and the types of features are diverse. In order to ensure the safety and improve the efficiency of autonomous driving of UGV in off-road environment, this paper proposes a global off-road path planning method for UGV based on the raw image of remote sensing map. Firstly, the raw image is gridded.
Technical Paper

Hierarchical Control Strategy of Predictive Energy Management for Hybrid Commercial Vehicle Based on ADAS Map

2023-04-11
2023-01-0543
Considering the change of vehicle future power demand in the process of energy distribution can improve the fuel saving effect of hybrid system. However, current studies are mostly based on historical information to predict the future power demand, where it is difficult to guarantee the accuracy of prediction. To tackle this problem, this paper combines hybrid energy management with predictive cruise control, proposing a hierarchical control strategy of predictive energy management (PEM) that includes two layers of algorithms for speed planning and energy distribution. In the interest of decreasing the energy consumed by power components and ensuring transportation timeliness, the upper-level introduces a predictive cruise control algorithm while considering vehicle weight and road slope, planning the future vehicle speed during long-distance driving.
Technical Paper

Interior Noise Analysis of a Commercial Vehicle Cab by Using Finite Element Method and Boundary Element Methods

2016-09-27
2016-01-8051
In order to predict the interior noise of a commercial vehicle cab, a finite element model of a heavy commercial vehicle cab was established. An acoustic-structure coupling model of the cab was built based on experimentally validated structure model and acoustic model of a commercial vehicle cab. Moreover, based on the platform of Virtual. Lab, the acoustic field modes of the acoustic model of the commercial vehicle cab and the coupled modes of the acoustic-structure coupling model were analyzed by using the acoustic-structure coupling analysis technique. The excitation of the vehicle cab was tested at an average speed on an asphalt road. Then, the interior noise of the heavy commercial vehicle cab was predicted based on FEM-FEM method and FEM-BEM method with all the parameters and excitation. Furthermore, the predicted interior noise of the commercial vehicle cab was compared with the tested interior noise.
Technical Paper

Interior Noise Prediction and Analysis of Heavy Commercial Vehicle Cab

2011-09-13
2011-01-2241
The basic theory of statistical energy analysis (SEA) is introduced, a commercial heavy duty truck cab is divided into 35 subsystems applying SEA method, and a three dimensional SEA model of the commercial heavy duty truck cab is created. Three basic parameters including modal density, damping loss factor and coupling loss factor are calculated with analytical and experimental methods. The modal density of the regular wall plate of the cab is calculated with traditional formula. The damping loss factors of the regular and complicated plates are obtained using analytical method and steady energy stream method. Meanwhile, the coupling loss factors of structure-structure, structure-sound cavity, and cavity-cavity are also calculated. Four kinds of excitations are in the SEA model, including sound radiation excitation of engine, engine mount vibration excitation, road excitation and wind excitation.
X