Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Comparative Evaluation of Pedestrian Kinematics and Injury Prediction for Adults and Children upon Impact with a Passenger Car

2004-03-08
2004-01-1606
Studies show that the pedestrian population at high risk of injury consists of both young children and adults. The goal of this study is to gain understanding in the mechanisms that lead to injuries for children and adults. Multi-body pedestrian human models of two specific anthropometries, a 6year-old child and a 50th percentile adult male, are applied. A vehicle model is developed that consists of a detailed rigid finite element mesh, validated stiffness regions, stiff structures underlying the hood and a suspension model. Simulations are performed in a test matrix where anthropometry, impact speed and impact location are variables. Bumper impact occurs with the tibia of the 50th percentile adult male and with the thigh of the 6-year-old child. The head of a 50th percentile male impacts the lower windshield, while the 6-year-old child's head impacts the front part of the hood.
Technical Paper

A Multi-Body Computational Study of the Kinematic and Injury Response of a Pedestrian with Variable Stance upon Impact with a Vehicle

2004-03-08
2004-01-1607
This research investigates the variation of pedestrian stance in pedestrian-automobile impact using a validated multi-body vehicle and human model. Detailed vehicle models of a small family car and a sport utility vehicle (SUV) are developed and validated for impact with a 50th percentile human male anthropometric ellipsoid model, and different pedestrian stances (struck limb forward, feet together, and struck limb backward) are investigated. The models calculate the physical trajectory of the multi-body models including head and torso accelerations, as well as pelvic force loads. This study shows that lower limb orientation during a pedestrian-automobile impact plays a dominant role in upper body kinematics of the pedestrian. Specifically, stance has a substantial effect on the subsequent impacts of the head and thorax with the vehicle. The variation in stance can change the severity of an injury incurred during an impact by changing the impact region.
Technical Paper

Development and Validation of a Finite Element Model for the Polar-II Upper Body

2006-04-03
2006-01-0684
The goal of this study was to develop and validate a finite element (FE) model of the Polar-II pedestrian dummy. An upper body model consisting of the head, neck, shoulder, thorax, and abdomen was coupled with a previously validated model of the lower limb The viscoelastic material properties of the dummy components were determined from dynamic compression tests of shoulder urethane, shoulder rubber and abdominal foam. For validation of the entire upper body, the model was compared with NHTSA response requirements for their advanced frontal dummy (Thor) including head and neck pendulum tests as well as ribcage and abdominal impact tests. In addition, the Polar-II full body FE model was subjected to simulated vehicle-pedestrian impacts that recreated published experiments. Simulated head and pelvis accelerations as well as upper body trajectories reasonably reproduced the experiment.
Technical Paper

Material Identification using Successive Response Surface Methodology, with Application to a Human Femur Subjected to Three-Point Bending Loading

2006-04-03
2006-01-0063
Material and structural properties of human tissues under impact loading are needed for the development of physical and computational models used in pedestrian and vehicle occupant protection. Obtaining these global properties directly from the data of biomechanical tests is a challenging task due to nonlinearities of tissue-test setup systems. The objective of this study was to develop subject-specific finite element (FE) techniques for material identification of human tissues using Successive Response Surface Methodology. As example, the test data of a human femur in three-point bending is used to identify parameters of cortical bone. Good global and local predictions of the optimized FE model demonstrate the utility and effectiveness of this new material identification approach.
Technical Paper

The Effects of Head Padding in Rear Facing Child Restraints

2005-04-11
2005-01-1839
Child restraint head padding is designed for the child's comfort under normal use. Under vehicle crash conditions, however, the padding in a rear facing child restraint may not be designed to sufficiently absorb impact energy. The objective of this paper is to evaluate the effects of various head padding conditions in rear facing child restraints in frontal impacts. Five sled tests were performed to measure the response of a CRABI 12 month dummy to different padding conditions in a rear facing child restraint. Static loading tests were performed on the padding materials. Results show that using padding of low stiffness increases head acceleration and HIC15 values.
Technical Paper

The Influence of Pelvis Design on the Lateral Pelvic Impact Response of the Polar-II Pedestrian Dummy

2006-04-03
2006-01-0682
Previous studies utilizing the Polar-II pedestrian dummy have suggested the need for a more biofidelic pelvis design in order to improve the overall dummy response kinematics. The current Polar-II dummy pelvis is a rigid steel structure. A preliminary version of a modified deformable pelvis equipped with sensors for measuring internal deflection and load has been designed. The goal of this study was to assess the biofidelity of these two pelves in full-scale tests with the Polar-II dummy that mimic lateral pelvic impact tests on PMHS (post-mortem human subjects) reported in the literature. The force - time, deflection - time, and force - deflection histories were compared to new PMHS response corridors determined using a normalization technique. In all tests with both pelves, the initial response (i.e., the first 3 ms to 5 ms following initial dummy - impactor contact) appeared to be totally determined by the mechanical behavior of the flesh.
Technical Paper

Thoracic Response to Shoulder Belt Loading: Investigation of Chest Stiffness and Longitudinal Strain Pattern of Ribs

2009-04-20
2009-01-0384
Two post-mortem human subjects were subjected to dynamic, non-injurious (up to 20% chest deflection) anterior shoulder belt loading at 0.5 m/s and 0.9 m/s loading rates. The human surrogates were mounted to a stationary apparatus that supported the spine and shoulder in a configuration comparable to that achieved in a 48 km/h sled test at the time of maximum chest deformation. A hydraulically driven shoulder belt was used to load the anterior thorax which was instrumented with a load cell for measuring reaction force and uniaxial strain gages at the 4th and 8th ribs. In addition, the deformation of the chest was measured using a 16- camera Vicon 3D motion capture system. In order to investigate the chest deformation pattern and ribcage loading in greater detail, a human finite element (FE) model of the thorax was used to simulate the tests.
X