Refine Your Search

Topic

Author

Search Results

Technical Paper

A Mission Statement for Space Architecture

2003-07-07
2003-01-2431
In an effort to define and advance the new discipline of Space Architecture, the AIAA technical subcommittee on Aerospace Architecture organized a Space Architecture Workshop that took place during the World Space Congress 2002 in Houston, Texas. One of the results of this workshop is a “Mission Statement for Space Architecture” that addresses the following core issues in a concise manner: definition, motivation, utility, required knowledge, and related disciplines. The workshop also addressed the typology and principles of space architecture, as well as basic philosophical guidelines for practitioners of this discipline. The mission statement, which was unanimously adopted by the workshop participants, reads as follows ([1], [2], [3]): “Space Architecture is the theory and practice of designing and building inhabited environments in outer space, responding to the deep human drive to explore and occupy new places.
Technical Paper

A Status Report of NASA's On-line Project Information System (OPIS), a Tool for Analysis-Focused Data

2008-06-29
2008-01-2019
The On-line Project Information System (OPIS) is a web-based database developed at NASA Ames Research Center (ARC) to improve information transfer and data availability for Exploration Life Support (ELS) projects. The tool enables users to investigate NASA technology development efforts, connect with knowledgeable experts, and to communicate important information. Within OPIS, Principal Investigators (PI's) post technical, administrative, and project participant information for other users to access through browse and search mechanisms. PI's are given technical data reporting requirements in the form of annual report templates, to assure that the information reported satisfies the most critical data needs of various ELS user groups. OPIS fulfills data and functionality needs of key user groups in the ELS Community through data solicitation, centralization, and distribution. The tool also circumvents data loss with ELS participant turnover.
Technical Paper

Advanced Life Support Requirements, Assumptions and Reference Missions

2002-07-15
2002-01-2480
To effectively develop advanced life support technologies to support humans on future missions into space, the requirements for these missions must first be defined. How many people will go? Where will they go? What risks must be protected against? Since NASA does not officially establish new exploration programs until authorized by Congress, there are no program requirements documents or list of “planned missions” to refer to. Therefore, technology developers must look elsewhere for information on how and where their development efforts and concepts may be used. This paper summarizes the development of several sources designed to help Advanced Life Support researchers working to extend a human presence in space.
Technical Paper

Aggregate System Level Material Analysis for Advanced Life Support Systems

2003-07-07
2003-01-2362
In this paper, an aggregate system level modeling and analysis framework is proposed to facilitate the integration and design of advanced life support systems (ALSS). As in process design, the goal is to choose values for the degrees of freedom that achieve the best overall ALSS behavior without violating any system constraints. At the most fundamental level, this effort will identify the constraints and degrees of freedom associated with each subsystem and provide estimates of the system behavior and interactions involved in ALSS. This work is intended to be a starting point for developing insights into ALSS from a systems engineering point of view. At this level, simple aggregate static input/output mapping subsystem models from existing data and the NASA ALS BVAD document are used to debug the model and demonstrate feasibility.
Technical Paper

Analysis of Widespread Fatigue Damage in Lap Joints

1999-04-20
1999-01-1586
This paper describes research to analyze widespread fatigue damage in lap joints. The particular objective is to determine when large numbers of small cracks could degrade the joint strength to an unacceptable level. A deterministic model is described to compute fatigue crack growth and residual strength of riveted panels that contain multiple cracks. Fatigue crack growth tests conducted to evaluate the predictive model are summarized, and indicate good agreement between experimental and numerical results. Monte Carlo simulations are then performed to determine the influence of statistical variability on various analysis parameters.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

2007-07-09
2007-01-3187
In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

Communication Skills Development: Practical Implications for a Culture of Safety in Aviation Maintenance

1998-11-09
983113
The negative consequences of unsafe behaviors on the job heavily contribute to the rising costs of doing business in terms of both organization dollars and diminished human quality of life. Developing a safety culture provides a positive proactive approach toward creating a working environment where safety is a top priority. An integral part of accomplishing this task is directly related to training individuals on how the interactions that occur among organizational members and the messages their behaviors send influence others' behaviors. This can be best addressed through communication skill development initiatives including mutual responsibility, trust, avoiding punitive strategies and facilitating assertiveness.
Technical Paper

Complementary Disinfection (UV Irradiation and Iodination) for Long-term Space Missions: Preliminary System Design

2004-07-19
2004-01-2516
As part of the NASA Specialized Center of Research and Training for Advanced Life Support (NSCORT-ALS) at Purdue University, a complementary disinfection process, which uses ultraviolet (UV) radiation as the primary disinfectant and iodine as the secondary, residual disinfectant, is being developed. UV radiation was selected as the primary disinfectant because it is effective at inactivating a broad spectrum of microorganisms and has minimal potential for the formation of disinfection byproducts. Iodine, which is effective at inactivating many microorganisms and is less likely to react and form disinfection byproducts than other halogens, was selected as the residual disinfectant because it has the potential for dual use as an on-line UV monitor, as well as a disinfectant.
Technical Paper

Considerations in Selection of Solid Waste Management Approaches in Long-Duration Space Missions

2002-07-15
2002-01-2476
Solid Waste Management (SWM) systems of current and previous space flight missions have employed relatively uncomplicated methods of waste collection, storage and return to Earth. NASA's long-term objectives, however, will likely include human-rated missions that are longer in both duration and distance, with little to no opportunity for re-supply. Such missions will likely exert increased demands upon all sub-systems, particularly the SWM system. In order to provide guidance to SWM Research and Technology Development (R&TD) efforts and overall system development, the establishment of appropriate SWM system requirements is necessary. Because future long duration missions are not yet fully defined, thorough mission-specific requirements have not yet been drafted.
Technical Paper

Critical Management Skills for Maintenance Managers

1999-08-10
1999-01-2976
Recognizing that technicians and managers need additional skills in order to compete for and successfully fill management positions, a major air carrier requested that Purdue University perform a study with employees in order to identify specific skills that are required to perform successfully in leadership positions. The study identified three core competencies (leadership, communication, and management processes) needed to be a successful leader in a major air carrier environment and outlined several related knowledge and skills within each area. Currently, many individuals in front line and mid-level management are lacking in several of these knowledge bases and skill sets. Consequently, the value of addressing current deficiencies through educational and experiential learning opportunities was proposed.
Technical Paper

Developing Education and Outreach Initiatives at the Indiana Space Grant Consortium

2009-07-12
2009-01-2546
The Indiana Space Grant Consortium is one of 52 members of the National Space Grant College and Fellowship Program (“Space Grant”), which was initiated by NASA in 1988. Space Grant is designed to be a source of NASA-related information, awards, and programs to enhance education, outreach, and workforce development for the United States. Based on the land grant model of public university education, Space Grant seeks to spread the vision of NASA to increase science, technology, engineering, and math (STEM) awareness; NASA-related education; workforce development; outreach and research activities. This paper describes the evolution of these activities in Indiana.
Technical Paper

Education and Outreach Program Designed for NASA Specialized Center of Research and Training in Advance Life Support (ALS/NSCORT)

2004-07-19
2004-01-2418
The NASA Specialized Center of Research and Training in Advanced Life Support (ALS/NSCORT) Education and Outreach Program is designed to engage audiences through concepts and technologies highlighted in the NSCORT research program. The outreach program is composed of three thrust areas. These areas are technical outreach (graduate education, technology transfer, presentations to industry, etc.), educational outreach (professional development, undergraduate, K-12), and public outreach (museums, state fairs, etc.) Program design of the technical and educational outreach began in January 2003. This paper reports anecdotal data on one ALS/NSCORT outreach program and gives a brief description of the other programs in their pilot stages. Technical and educational outreach programs developed to date include: 1) Summer Fellowship Research Program, 2) Distance Learning Course, 3) Key Learning Community Collaborative Project and 4) Mission to Mars.
Journal Article

Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling

2012-09-10
2012-01-1868
Deep-hole drilling is among the most critical precision machining processes for production of high-performance discrete components. The effects of drilling with superimposed, controlled low-frequency modulation - Modulation-Assisted Machining (MAM) - on the surface textures created in deep-hole drilling (ie, gun-drilling) are discussed. In MAM, the oscillation of the drill tool creates unique surface textures by altering the burnishing action typical in conventional drilling. The effects of modulation frequency and amplitude are investigated using a modulation device for single-flute gun-drilling on a computer-controlled lathe. The experimental results for the gun-drilling of titanium alloy with modulation are compared and contrasted with conventional gun-drilling. The chip morphology and surface textures are characterized over a range of modulation conditions, and a model for predicting the surface texture is presented. Implications for production gun-drilling are discussed.
Technical Paper

Equivalent System Mass of Producing Yeast and Flat Breads from Wheat Berries, A Comparison of Mill Type

2004-07-19
2004-01-2525
Wheat is a candidate crop for the Advanced Life Support (ALS) system, and cereal grains and their products will be included on long-term space missions beyond low earth orbit. While the exact supply scenario has yet to be determined, some type of post-processing of these grains must occur if they are shipped as bulk ingredients or grown on site for use in foods. Understanding the requirements for processing grains in space is essential for incorporating the process into the ALS food system. The ESM metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The objective of this study was to compare the impact of grain mill type on the ESM of producing yeast and flat breads. Hard red spring wheat berries were ground using a Brabender Quadrumat Jr. or the Kitchen-Aid grain mill attachment (both are proposed post-harvest technologies for the ALS system) to produce white and whole wheat flour, respectively.
Technical Paper

Estimating Plant Growth Area With The Biomass Production Chamber Sizing Model

2001-07-09
2001-01-2320
The Biomass Production Chamber (BPC) Sizing Model has been designed to incorporate plant growth chamber options into NASA’s Advanced Life Support Sizing Analysis Tool. The concept addressed by the model is that the gas exchange from a biomass production chamber, in conjunction with human metabolic data and food consumption rates, can be used to estimate the chamber size necessary for the gas exchange and food production rate required for a specific crew size. NASA’s baseline design utilizes a 78m2 (840 ft2) plant growth area and a 9.45m (31 ft) center shelf length. Using an iterative comparison method, the center shelf is incremented by 1.5m (5 ft) sections until necessary food production requirements and gas exchange rates are satisfied.
Technical Paper

Excitation Strategies for a Wound Rotor Synchronous Machine Drive

2014-09-16
2014-01-2138
In this research, excitation strategies for a salient-pole wound rotor synchronous machine are explored using a magnetic equivalent circuit model that includes core loss. It is shown that the excitation obtained is considerably different than would be obtained using traditional qd-based models. However, through evaluation of the resulting ‘optimal’ excitation, a relatively straightforward field-oriented type control is developed that is consistent with a desire for efficiency yet control simplicity. Validation is achieved through hardware experiment. The usefulness/applicability of the simplified control to variable speed applications is then considered.
Technical Paper

Experimental Results Obtained with a Pilot Scale System to Remove Pollutants from an Incinerator Effluent

2002-07-15
2002-01-2395
Incineration is a promising method for converting biomass and human waste into CO2 and H2O during extended planetary exploration. Unfortunately, it produces NOX and other pollutants. TDA Research has developed a safe and effective process to remove NOX from waste incinerator product gas streams. In our process, NO is catalytically oxidized to NO2, which is then removed with a wet scrubber. In a SBIR Phase II project, TDA designed and constructed a pilot scale system, which will be used with the incinerator at NASA Ames Research Center. In this paper, we present test results obtained with our system, which clearly demonstrate the effectiveness of this approach to NOX control.
Technical Paper

Human Factors Best Practices

1999-08-10
1999-01-2977
Throughout the industry, organizations struggle with the task of implementing effective human factors programs aimed at reducing maintenance errors. Almost universally, many barriers have frustrated these efforts. In 1998 and 1999, the National Transportation Safety Board sponsored two workshops designed at identifying barriers to the implementation of human factors programs and to explore what was working and what was not working among the many industry efforts. This paper explores the findings of these workshops. In addition, it will report findings of Purdue University studies that reveal a rapid deterioration of even the most successful human factors programs. The research findings disclose several “disconnects” within most organizations which rapidly negate the positive effects of successful human factors and error management training and nullify many proactive human factors programs.
Technical Paper

ISS ECLS System Analysis Software Tools - An Overview and Assessment

2002-07-15
2002-01-2343
There have been many software programs that have provided simulations for the performance and operation of the Environmental Control and Life Support Subsystems (ECLSS) in the International Space Station (ISS) and in the Space Shuttle. These programs have been applied for purposes in system analysis, flight analysis, and ECLSS studies. Flight and system analysis tasks are deemed important. Therefore, more manpower and resources added for such work is considered beneficial. System analysis covers design and trouble-shooting, the validation of Flight Rules, and the contingency analysis. During the engineering design phase, ECLSS modelers predict the performance and interaction of units in a process train. Simulation results can be useful in estimating equipment sizes and costs. This article has also used two examples to illustrate that many Flight Rules need to be validated using properly selected integrated programs.
X