Refine Your Search

Topic

Author

Search Results

Technical Paper

A 1:3 Small Scale Vehicle Model Investigation in Small Scale Wind Tunnel and Correlation with Full Vehicle Testing

2021-09-22
2021-26-0493
In present study a comparative investigation and correlation attempted on small scale vehicle model for aerody-namic drag performance at small scale wind tunnel test facility in India vs full vehicle tested at globally know and accepted full scale test facility in Pininfarina, Italy. Current investigation aims to assess the small-scale wind tunnel suitable for testing 1:3 small scale car models A scale model of 1:3 scale size was tested in small scale wind tunnel (at IISC,Bengaluru, India) having test section area of 11.68 Sq. m. To understand the overall vehicle aerodynamic drag performance small scale model was test-ed for different configurations such as baseline, spoiler removal, underbody cover and different yaw condition. To understand the correlation between small scale vs full vehicle’s aerodynamic performance one actual vehicle was also tested at full scale wind tunnel Pinifarina Italy.
Technical Paper

A Durability Analysis Case Study of SUV and MUV Using Measured Proving Ground Road Profiles

2010-04-12
2010-01-0495
With an increasing demand to reduce the product development time cycle from concept-to-vehicle, weight saving effort and less prototype initiative, CAE evaluation technique in the vehicle durability development must allow the computer simulation to reproduce the actual driving condition over a proving ground. This paper describes the case study to predict the durability performance of full vehicle using vehicle FE parts in ADAMS model. The objective is to carry out full vehicle simulation in actual road load condition using reduced full vehicle FE model, condensed with the ADAMS model. The measured acceleration is applied to the vehicle FE model and dynamic loads converted to equivalent static loads. The FE model solved in MSC.Nastran® with number of static load subcases converted from the measured proving ground road data. It also verifies the validity of the evaluation methodologies by simulation-to-experiment comparisons.
Technical Paper

A Study on the Repeatability of Vehicle Ride Performance Measurements

2019-01-09
2019-26-0076
Across the automotive industries, objective measurements and subjective assessment of vehicle ride performance are routinely carried out during development as well as validation phase. Objective measurements are receiving increased attention as they are generally believed to offer a higher degree of objectivity and repeatability compared to the subjective assessment alone. Typical industry practices include the acquisition of vehicle-occupant vibrational response on specified road sections, test surfaces on proving grounds or in a controlled input environment such as four-poster test rig. In presented work, a study is performed on the repeatability of vehicle ride performance metrics such as weighted RMS acceleration and frequency responses using the data acquired in repeated trials conducted using three different sports utility vehicles (SUVs) on a sufficiently long designated road section.
Technical Paper

A Unique Methodology to Evaluate the Metallic Noise Concern of a Dual-Mass Flywheel in Real-World Usage Conditions

2021-10-01
2021-28-0249
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration, and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMF’s are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the robustness of the DMF. In the present work, by capturing the Real-World Usage Profile (RWUP) conditions, a new methodology is developed to evaluate the robustness of a DMF fitted in a Sports utility vehicle (SUV). Ventilation holes are provided on clutch housing to improve convective heat transfer. Improvement in convective heat transfer will increase the life and will reduce clutch burning concerns. Cities like Mumbai, Chennai, Bangalore, roads will have clogged waters during rainy season. When the vehicle was driven in such roads, water enters inside the clutch housing through ventilation holes.
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with rear-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the systems might end up in introducing a significantly high impact torque on the DMF.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Agricultural Tractor Engine Noise Prediction and Optimization through Test and Simulation Techniques

2021-09-22
2021-26-0277
Engine radiated noise has complex behavior as engine assembly consist different components, varying dynamic forces with wide range of speed. For open station tractor, engine noise is major contributor and hence needs to be optimized for regulatory norms as well customer comfort. The awareness about NVH comfort in domestic market as well as export market is increasing as customer have become more demanding. This forces OEM’s to put serious efforts to ensure the OEL noise / Engine noise is at acceptable levels. Identifying the optimized countermeasures to reduce the engine noise during the early design phase has a greater impact in reducing product development time and cost. This paper describes about a process that has been established for evaluating engine radiated noise and to improve the overall NVH performance.
Technical Paper

Assessment of Cabin Leakage on Thermal Comfort and Fuel Efficiency of an SUV

2016-04-05
2016-01-0259
The main function of an air conditioning system in a vehicle is to provide the thermal comfort to the occupant at minimum possible energy consumption in all environmental conditions. To ensure the best possible thermal comfort, air conditioning system is optimized on various parameters like heat load, air flow distribution, glass area, trim quality, insulations and cabin leak rate. A minimum cabin leakage is regulatory requirements to ensure the air quality of cabin. Anything above the minimum cabin leak rate ultimately turn into reduced thermal comfort and additional energy consumption. The additional energy consumption to maintain the required thermal comfort in the cabin due to cabin leakage affects the fuel efficiency severely. In the present study, the effect of cabin leakage on fuel efficiency and thermal comfort is studied in details by varying the cabin leakage through mechanical means. The experiments are carried out in normal environmental condition and road condition.
Technical Paper

Automated Test Setup for Edge Compute Connectivity Devices by Recreating Live Connected Ecosystem on the Bench

2021-09-22
2021-26-0498
Connected vehicle services have come a long way from the early days of telematics, both in terms of breadth of the class of vehicles, and in terms of richness or complexity of the data being handled for Enhancing Customer Experience. The Connectivity Control unit (CCU) is a gateway device for the vehicle to the outside world. While it enables transmission of vehicle data along with the location information. CCU is currently validated in the vehicle to check functionality. It has cost, time drawbacks and prevents effective testing of many scenarios. Bench level validation will not be able to complete functionality validation. There is subset of validation tools or semi-automated solutions are available in the market, but they are not fully functional, and critically cannot perform end to end validation. Automated Test setup for CCU in lab simulating the entire field data of the vehicle with modifiable characteristics.
Technical Paper

Bringing Field to Lab in Tractor Evaluation Through Three Poster Test System and Statistical Tools

2005-11-01
2005-01-3539
The emerging business imperative of frequent new product introduction in market throws up challenge to shorten testing and evaluation time. Advanced test facilities and statistical tools have a greater role in reducing the evaluation cycle time. Considering limitations of field testing, a need was felt to simulate field condition in the laboratory i.e., ‘Bringing field to lab’. In this paper, an effort is made to explain the concept of ‘Bringing field to lab’ and the approach towards accomplishing it. The methodology developed for assessing effectiveness of laboratory tests i.e., ‘Power of Lab’ is shared. Various means of accelerating the tests and verifying field to lab correlation are explained. In quest to pursue the vision of ‘Bringing field to lab’ program, a new test facility has been developed to evaluate tractor i.e., Three-Poster Test System. Features of this test system, along with it’s role in ‘Bringing field to lab’, are shared along with the test results obtained.
Technical Paper

Chain Load Optimization through Fuel Pump Lobe Phasing and CAE Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0163
The introduction of CAFE (Corporate Average Fuel Economy) norms has put a lot of importance on improving the fuel economy of passenger car vehicles. One of the areas to improve the fuel economy is by reducing engine friction. Camshaft drive torque reduction is one such area that helps in engine friction reduction. This paper explains the camshaft drive torque optimization work done on a passenger car Diesel engine with DOHC (double overhead camshaft). The exhaust camshaft of the engine drives the high-pressure Fuel Injection Pump (FIP) in addition to valve actuation. Camshaft drive torque is reduced by reducing the chain load. This is done through optimum phasing of the FIP lobe that drives the fuel injection pump and the cam lobe actuating the exhaust valves. Additional boundary condition for the phasing is ensuring that the FIP lobe is in the fall region of its profile while the piston is at TDC. This helps in avoiding rail pressure fluctuation.
Technical Paper

Comparative Studies of Different VGT Designs on Performance and Smoke of CRDe Engine

2018-07-09
2018-28-0074
Diesel engines have occupied a significant position in passenger car applications in the present automotive sector. Turbochargers find a very prominent role in diesel engines of all applications in order to achieve desired power and better fuel economy. Gaining higher torque at lower engine speeds with low smoke levels is a very tough task with fixed geometry turbochargers due to availability of lower air mass resulting in higher smoke emissions. Variable geometry turbochargers are capable of providing better torque at lower speeds and reduced smoke emissions on Common Rail Diesel engines. The Variable Geometry Turbocharger types used in this study are straight profile nozzle vanes (sample A) and curved profile nozzle vanes (sample B). The curved profile vanes as seen in sample B results in reduced variation of circumferential pressure distortions.
Technical Paper

Computational and Experimental Investigations to Improve Performance, Emissions and Fuel Efficiency of a Single Cylinder Diesel Engine

2015-01-14
2015-26-0099
From International Energy Statistics (IES) survey, China, US and India are top three countries in emitting CO2 emissions. Further, worldwide national governments are focused to control CO2 emissions at source by stringent regulatory limits. OEMs and Research laboratories are working on several technology options such as advanced fuel injection system, optimizing in cylinder combustion system, thermal management and reduced engine friction to meet this legal requirements. In this paper, research work focused on improving combustion system through selection optimum bowl geometry and increasing volumetric efficiency through valve timings, profile and intake system using both 1D and 3D-CFD numerical approach. The main objective of this approach to utilize fossil fuel to its maximum potential in a single cylinder Naturally Aspirated (NA) water cooled engine with CRDI.
Technical Paper

Cost and Weight Efficient Differential Housing for Off-Road Vehicles

2016-02-01
2016-28-0133
Differential in Gear Box play vital role in Tractors for assisting it in turning and also to take straight path. Light weight machine always have advantage in terms of fuel economy and performance. Weight optimized rotating part have additional benefits of saving power loss, against stationary dead weight. Differential Housing is such a part, which rotates during the vehicle motion and torque transmission. [1] This paper describes a method by which weight of the Differential Housing is optimized. In this particular body of work, additional constraints of avoiding any change in existing cold forged parts like Bevel Gear & Pinion. This also have additional benefit of enhanced flow of Oil inside Differential Housing for better lubrication of Bevel Gears and Pinion. This resulted in weight saving of Differential Housing and finally fuel economy of Tractor.
Technical Paper

Derivation of Extreme Static Durability Load Cases for FEA Based Vehicle Strength Evaluation

2011-09-13
2011-01-2174
Validation of vehicle structure by use of finite element analysis is at the core of reduction of product development time. In the early phase of validation it is required to evaluate the strength of the vehicle structure to account for the loading during physical validation and service loading. In service the vehicle is subjected to variable loads. These act upon the components that originate from road roughness, maneuvers and power train loads. All systems in the vehicle represent more or less complicated elastic structures subjected to time varying loads. A time domain dynamic assessment of the vehicle structure is time consuming and expensive. Also in the early phase of design wherein several design iterations need to be carried out for design validation, it is practically impossible to conduct a dynamic analysis and fatigue life assessment. Extreme static load cases are traditionally being used for this process.
Technical Paper

Design Analysis and Development of Aluminium Cylinder Block with Slip-Fit Cylinder Liners for High Performance New Generation Passenger Car Diesel Engine

2023-04-11
2023-01-0442
The global automotive industry is growing rapidly in recent years and the market competition has increased drastically. There is a high demand for passenger car segment vehicles with high torque delivery and fuel economy for a pleasant drivability experience. Also, to meet the more stringent emission requirements, automakers are trying very hard to reduce the overall vehicle gross weight. In lowering both fuel consumption and CO2 generation, serious efforts have been made to reduce the overall engine weight. An engine cylinder block is generally considered to be the heaviest part within a complete engine and block alone accounts for 3-4% of the total weight of the average vehicle, thus playing a key role in weight reduction consideration. Aluminum casting alloys as a substitute for the traditional cast iron can mean a reduction in engine block weight between 40 and 55% [9], even if the lower strength of aluminum compared to grey cast iron is considered.
Technical Paper

Design For Affordability -Composite Running Board

2015-01-14
2015-26-0070
Light weighting is the Current trends in automotive to achieve better fuel economy which helps for meeting fuel economy standards & to offset the higher fuel prices. Thus there is a need to develop composite running board which is light weight & structurally sound enough to meet the performance. The present paper provides a composite running board assembly for an automobile. The running board assembly includes a board, an insert body and a plurality of brackets. Upon stepping of a passenger on the board, the board transfers load on the insert body which subsequently transfers the load to the plurality of brackets thus facilitating even distribution of the load on the automobile body. This paper also put lights on the use of improved TRIZ application - an approach to inventive problem solving for designing highly affordable & light weight running board. The cost & weight reduction achieved with innovative design is about 40 % & 35 % comparing to existing cost & weight.
Technical Paper

Determination of Principal Variables for Prediction of Fuel Economy using Principal Component Analysis

2019-01-09
2019-26-0359
The complexity of Urban driving conditions and the human behavior introduces undesired variabilities while establishing Fuel economy for a vehicle. These variabilities pose a great challenge while trying to determine that single figure for assessment of vehicle’s fuel efficiency on an urban driving cycle. This becomes even more challenging when two or more vehicles are simultaneously evaluated with respect to a reference vehicle. The attempt to fit a generalized linear model, between Fuel Economy as predicted variable and components of a driving cycle as predictor variables produced oxymoronic and counter-institutive results. This is primarily due to existence of multi-collinearity among the predictor variables. The context of the study is to consider the event of driving on a cycle as a random sampling experiment. The outcome of a driving cycle is summarized into a list of predictor variables or components.
Technical Paper

Development & Customization of Test Cases for Start-stop Functionality to Achieve On-road Robustness

2013-11-27
2013-01-2875
The Micro-hybrid technology otherwise called as stop start system offers a significant improvement in fuel economy particularly in urban driving conditions, where more often the engine idles unnecessarily at traffic signals/jams. Micro-hybrid technology stops the engine at traffic signals/jams and starts the engine automatically on clearance of traffic signals/jams leading to reduced fuel consumption and emissions. This is achieved by monitoring several vehicle and engine parameters through appropriate sensing elements. In this study, the system architecture and functional definitions of start/stop system is defined. Equivalence class, boundary value and decision-table testing are used to generate test cases. On generation of test cases, their relevance on on-road robustness and scope for optimization towards time/efforts are analyzed. In the process, a matrix of different conditions and criteria are formulated. Under these conditions, the system behavior is evaluated.
Technical Paper

Energy Impact Analysis of Switchable Coolant Pump in a High Power Density Diesel Engine

2021-10-01
2021-28-0279
Over the years, Internal Combustion engines have evolved drastically from large naturally aspirated engines to small sized forced aspiration engines which have a power output comparable to that of higher capacity engines. Engine downsizing has become more prominent in the present world due to higher focus being exerted on Fuel Economy and tighter emission norms. In the process of achieving these highly efficient engines, their cooling systems are also designed to handle the higher thermal operating conditions. This leads to a negative impact on the cold NEDC cycle by resulting in a longer warmup periods to get the engine upto its optimum operating temperature. This has a major effect on both the combustion efficiency as well as the frictional resistance of the engine. Switchable coolant pumps are one way to address this problem by creating zero flow conditions to warmup the engine by restricting any unnecessary heat rejection and improving the in-cylinder temperature.
X