Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

An Insight Into Effect of Split Injection on Mixture Formation and Combustion of DI Gasoline Engines

2004-06-08
2004-01-1949
In the previous study of the authors, it was found that some benefits for the mixture preparation of DI gasoline engines can be offered by splitting the fuel injection, such as the phenomenon of high density liquid phase fuel piling up at the leading edge of the spray can be circumvented. In a further analysis, the vapor quantity in the “stable operating” range (equivalence ratio of vapor ϕv in a range of 0.7≤ϕv≤1.3) was significantly increased by the split injection compared to the single injection. In this work, the mechanism of the effect of the split injection on the mixture formation process was studied by combining the laser-sheet imaging, LIF-PIV and the LAS (Laser Absorption Scattering) technique. As a result, it is found that the spray-induced ambient air motion can help the formation of the more combustible mixture of the split injection whereas it played a minus role of diluting the spray by the single injection.
Technical Paper

Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions

2003-05-19
2003-01-1811
Mixture formation processes play a vital role on the performance of a D.I. Gasoline engine. Quantitative measurement of liquid and vapor phase concentration distribution in a D.I. gasoline spray is very important in understanding the mixture formation processes. In this paper, an unique laser absorption scattering (LAS) technique was employed to investigate the mixture formation processes of a fuel spray injected by a D.I. gasoline injector into a high pressure and temperature constant volume vessel. P-xylene, which is quite suitable for the application of the LAS technique, was selected as the test fuel. The temporal variations of the concentration distribution of both the liquid and vapor phases in the spray were quantitatively clarified. Then the effects of injection pressure and quantity on the concentration distributions of both the liquid and vapor phases in the spray were analyzed.
Technical Paper

Development of Fuel Sloshing Evaluation Technique upon Crash Using Fluid-Structure Interaction Simulation

2019-04-02
2019-01-0941
In the development of fuel tank systems, it is important to maintain fuel system integrity even if a car accident occurs. When a fuel tank undergoes a sudden change in velocity, the fuel starts to move and deforms the tank walls and baffle plates, and then the deformation changes the flow pattern of fuel. Because interaction of fuel with tank components is the main cause of fuel spillage upon crash, it is important to predict complex fluid-structure interaction responses at an early stage of crash safety development with a multiphysics simulation. Development of the multiphysics simulation technique was conducted stepwise by examining “fluid motion” and “tank deformation.” First, a sled test of a rigid-wall tank with observation window was conducted to evaluate the fluid motion inside the tank. A numerical model was developed based on an ALE (Arbitrary Lagrangian Eulerian) algorithm for the fluid and a Lagrangian algorithm for the structure.
Technical Paper

Development of film heat transfer model based on multiphase flow numerical analysis

2023-09-29
2023-32-0012
Automobiles will have to be applied strict regulations such as Euro7 against PM, HC, CO. The generation of these components are related to fuel deposition to the wall surface of the combustion chamber. Therefore, the fuel injection model of engine combustion CFD requires accurate prediction about the deposition and vaporization of fuel on the combustion chamber. In this study, multiphase flow numerical analysis that simulates fuel behavior on the wall surface was conducted first. Then, two model formulae about the contact area and the heat flux of a liquid film was constructed based on the result of multiphase flow numerical analysis method. Finally, the new film heat transfer model was constructed from these model formulae. In addition, it was confirmed that new heat transfer model can predict the liquid film temperature obtained by multiphase flow numerical analysis method accurately.
Technical Paper

Investigation of High-Compression Lean Burn Engine

1800-01-01
871215
The sequential fuel injection, in which fuel is injected into swirl being generated for mixture stratification, was used to pursue the potential of a lean burn engine for its performance improvement. As a result, it has been found that the most effective method to increase thermal efficiency while reducing NOx emission level is to combine a high-compression compact combustion chamber located on exhaust valve side in cylinder head with DICS (Dual induction Control System). This method was used to build a high-compression lean burn concept vehicle, which was evaluated for compliance to various emission standards. Testing showed that the concept vehicle can improve fuel economy by 10.5% on the Japanese 10-mode cycle, by 8.3% on the ECE mode cycle, and by 6.3% on the U.S. EPA test mode cycle while meeting respective emission standards.
Technical Paper

Measurement of Fuel Distribution in the Piston Cavity of Direct Injection SI Engine by Using LIF

2000-03-06
2000-01-0240
In-cylinder flow and fuel behaviors in the piston cavity of a direct injection SI engine were measured by using PIV and LIF. The effect of the cavity wall on the mixing process was the focus in this study. The optical prism was installed inside piston to observe air flow and fuel behavior on a horizontal plane of the cavity combustion chamber in the piston. The fuel spray mainly impinged on the cavity bottom surface and rolled up along the cavity wall near the spark plug by it's own momentum. Then it was evaporated and diffused by swirl flow. The effect of fuel injection timing on the mixing process was also investigated. Earlier injection timing made fuel momentum small up to the time of impingement. Therefore, the fuel vapor was considerably diffused by swirl flow in the piston cavity and fuel vapor concentration near the spark plug was low.
Technical Paper

Spray and Evaporation Characteristics of Multi-Hole Injector for DISI Engines - Effect of Diverging Angle Between Neighboring Holes

2009-04-20
2009-01-1500
Experimental and computational studies were carried out to characterize the spray development and evaporation processes of multi-hole injector for direct injection spark ignition (DISI) engines. The main injector parameter to be investigated in this study is a diverging angle between neighboring two holes. In the experimental study, the influence of the diverging angle on evaporation process of fuel spray from two-hole injector was investigated using Laser Absorption Scattering (LAS) measurement. Smaller diverging angle causes larger spray tip penetration because the momentum of the spray from one hole emphasizes another, when two spray merge to one. Moreover, spray tip penetration decreases at certain diverging angle due to the negative pressure region between two sprays. Mechanisms behind the above spray behaviors were discussed using the detailed information on the spray and ambient gas flow fields obtained by the three dimensional computational fluid dynamics (CFD).
Technical Paper

Spray and Mixture Properties of Hole-Type Injector for D. I. Gasoline Engine-Comparison of Experiment and CFD Simulation-

2007-07-23
2007-01-1850
An experimental and numerical study was conducted on the spray and mixture properties of a hole-type injector for direct injection (D. I.) gasoline engines. The Laser Absorption Scattering (LAS) technique was adopted to simultaneously measure the spatial concentration distributions and the mass of the liquid and vapor phases in the fuel spray injected into a high-pressure and high-temperature constant volume vessel. The experimental results were compared to the numerical calculation results using three-dimensional CFD and the multi-objective optimization. In the numerical simulation, the design variable of the spray model was optimized by choosing spray tip penetration, and mass of liquid and vapor phases as objective functions.
X