Refine Your Search

Topic

Search Results

Technical Paper

A Study of Abnormal Wear in Power Cylinder of Diesel Engine with EGR - Wear Mechanism of Soot Contaminated in Lubricating Oil

2000-03-06
2000-01-0925
Exhaust-gas recirculation (EGR) causes the piston ring and cylinder liners of a diesel engine to suffer abnormal wear. The present study aimed at making clear the mechanism of wear which is induced by soot in the EGR gas. The piston ring has been chrome plated and the cylinder was made of boron steadite cast iron. Detailed observations of the ring sliding surfaces and that of the wear debris contained in lubricating oil were carried out. As a result, it was found that the wear of the top ring sliding surfaces identify abrasive wear without respect to the presence of EGR by steadite on the cylinder liner sliding surface. In addition, it is confirmed in a cutting test that soot mixed lubricating oil improved in performance as cutting oil. Based on these results, we proposed the hypothesis in the present study that ring wear is accelerated at EGR because abrasive wear increases due to a lot of soot mixed into lubricating oil improving the performance of lubricating oil as cutting oil.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Technical Paper

A Study on the Mechanism of Backfire in External Mixture Formation Hydrogen Engines -About Backfire Occurred by Cause of the Spark Plug-

1997-05-01
971704
It is a well-known fact that the exhaust emission characteristics of hydrogen fueled engines are extremely good. The external mixture formation - a hydrogen fuel supply method - has the merit of practically zero NOx emission level in the lean mixture range with the excess air ratio λ set at 2.0 or greater as well as the merits of simple mechanism and easy operation. However, the practical use of such engines has been impeded partly due to the occurrence of backfire where the excess air ratio λ is 2 to 3. In order to allow the practical use of the hydrogen fueled engines with external mixture formation, it is vital to determine the causes of backfire and to establish proper countermeasures. It is found through a recent study conducted on the mechanism of backfire that the abnormal electric discharge in the intake stroke is one of the causes of backfire.
Journal Article

An Experimental Study on Relationship between Lubricating Oil Consumption and Cylinder Bore Deformation in Conventional Gasoline Engine

2009-04-20
2009-01-0195
It is well known that lubricating oil consumption (LOC) is much affected by the cylinder bore deformation occurring within internal combustion engines. There are few analytical reports, however, of this relationship within internal combustion engines in operation. This study was aimed at clarifying the relationship between cylinder bore deformation and LOC, using a conventional in-line four-cylinder gasoline engine. The rotary piston method developed by the author et al. was used to measure the cylinder bore deformation of the engine’s cylinder #3 and cylinder #4. In addition, the sulfur tracer method was applied to measure LOC of each cylinder. LOC was also measured by changing ring tension with a view to taking up for discussion how piston ring conforms to cylinder, and how such conformability affects LOC. Their measured results were such that the cylinder bore deformation was small in the low engine load area and large in the high engine load area.
Technical Paper

Analysis of Degree of Constant Volume and Cooling Loss in a Hydrogen Fuelled SI Engine

2001-09-24
2001-01-3561
This study analyzes the factors influencing the thermal efficiency of a homogeneous charge spark-injection (SI) engine fuelled with hydrogen, focusing on the degree of constant volume and cooling loss. The cooling loss from the burning gas to the cylinder walls is quantitatively evaluated by analyzing the cylinder pressure diagram and exhaust gas composition. The degree of constant volume burning and constant volume cooling are also obtained by fitting the Wiebe function to the rate of heat release calculated using the cylinder pressure diagram. A comparison of combustion and cooling characteristics of hydrogen and methane combustion reveals that cooling loss in hydrogen combustion is higher than that of methane combustion due to the short quenching distance and rapid burning velocity during hydrogen combustion. It is also suggested that the high cooling loss observed during hydrogen combustion reduces thermal efficiency.
Technical Paper

Characteristics of Combustion Pressure Vibration in Hydrogen Fuel Injection Hot Surface Ignition Engines

1987-09-01
871611
In high pressure hydrogen injection hot surface ignition engines under nearly all engine operating conditions combustion pressure vibration is generated just after ignition. As a result of many experimental investigations the true nature for the cause of this interesting phenomenon was found and are listed: (1) This phenomenon probably originates from the extremely high local rate of burning of the hydrogen-air mixture. (2) Accompaning the stronger combustion pressure vibration was an increase in engine vibration and noise with increase in NOx emission and higher piston temperature. (3) Longer ignition delay resulted in a steeper pressure-time diagram which resalted in a stronger combustion pressure vibration. (4) The phenomenon had negligible effect on engine performance. (5) The phenomenon can be prevented by premixing a ceratain quantity of hydrogen gas into the intake air stream. The result was a shortened ignition delay.
Technical Paper

Combustion Characteristics of H2-CO-CO2 Mixture in an IC Engine

2001-03-05
2001-01-0252
Reformed fuel from hydrocarbons or alcohol mainly consists of hydrogen, carbon monoxide and carbon dioxide. The composition of the reformed fuel can be varied to some extent with a combination of a thermal decomposition reaction and a water gas shift reaction. Methanol is known to decompose at a relatively low temperature. An application of the methanol reforming system to an internal combustion engine enables an exhaust heat recovery to increase the heating value of the reformed fuel. This research analyzed characteristics of combustion, exhaust emissions and cooling loss in an internal combustion engine fueled with several composition of model gases for methanol reformed fuels which consist of hydrogen, carbon monoxide and carbon dioxide. Experiments were made with both a bottom view type optical access single cylinder research engine and a constant volume combustion chamber.
Technical Paper

Development of a Technique to Predict Oil Consumption with Consideration for Cylinder Deformation - Prediction of Ring Oil Film Thickness and Amount of Oil Passing Across Running Surface under Cylinder Deformation -

2003-03-03
2003-01-0982
Although various factors affecting oil consumption of an internal combustion engine can be considered, a technique to predict the amount of oil consumed within a cylinder that passes across a running surface of a ring was developed in this study. In order to predict the effect of cylinder deformation on oil consumption, a simple and easy technique to calculate the oil film thickness in deformed cylinder was proposed. For this technique, the piston ring was assumed to be a straight beam, and the beam bends with ring tension, gas pressure, and oil film pressure. From the calculated oil film thickness, amount of oil passing across the running surface of the TOP ring and into the combustion chamber was calculated. The calculated results were then compared to the oil film thickness of the ring and oil consumption measured during engine operation, and their validity was confirmed.
Technical Paper

Direct Heat Loss to Combustion Chamber Walls in a D.I. Diesel Engine-Development of Measurement Technique and Evaluation of Direct Heat Loss to Cylinder Liner Wall

2007-09-16
2007-24-0006
The purpose of this study is to clarify the state of heat loss to the cylinder liner of the tested engine of which piston and cylinder head were previously measured. The authors' group developed an original measurement technique of instantaneous surface temperature at the cylinder liner wall using thin-film thermocouples. The temperature was measured at 36 points in total. The instantaneous heat flux was calculated by heat transfer analysis using measurement results of the temperature at the wall. As a result, the heat loss ratio to all combustion chamber walls is evaluated except the intake and exhaust valves.
Technical Paper

Effect of Hydrogen Jet on Mixture Formation in a High-Pressure Injection Hydrogen Fueled Engine with Spark Ignition

1993-08-01
931811
In order to establish hydrogen engines for practical use, it is important to overcome difficulties caused by unique characteristics of hydrogen fuel. A hydrogen engine with direct injection right before top dead center(TDC) and spark ignition has advantages such as prevention of abnormal combustion and realization of high power output near the stoichiometric air-fuel ratio, in comparison with an engine with external mixture. On the other hand, it has been pointed out that ignition and combustion for this type of hydrogen engines should be improved and that further studies on mixture formation of air and injected hydrogen are necessary for the improvement. For the direct injection hydrogen engine, mixture is formed both by air flow inside the combustion chamber and by injected hydrogen jet.
Technical Paper

Effect of Piston Motion on Piston Skirt Friction of a Gasoline Engine

1997-02-24
970839
This study has been aimed at the reduction of the intense piston skirt friction force that appears in the expansion stroke out of all piston friction forces generated in gasoline engines. The friction characteristics at the piston skirt have been analyzed according to the measured results at piston friction forces and the shapes of wears at the piston skirt in actual engine operations. It is found from the above that the majority of the side force working on each piston is supported by the oil film on the skirt, while only some of the side force is supported by the portion in metallic contact with the cylinder. It is also found through experiments that the metallic contact portion has a great effect on the friction force at the skirt. The effect of piston posture in expansion stroke on the friction force has been also analyzed based on the measured results of piston slap motions.
Technical Paper

Effects of Flame Motion and Temperature on Local Wall Heat Transfer in a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1992-10-01
922208
Local heat flux from the flame to the combustion chamber wall, q̇, was measured the wall surfaces of a rapid compression-expansion machine which can simulate diesel combustion. Temperature of the flame zone, T1, was calculated by a thermodynamic two-zone model using measured values of cylinder pressure and flame volume. A local heat transfer coefficient was proposed which is defined as q̇/(T1-Tw). Experiments showed that the local heat transfer coefficient depends slightly on the temperature difference, T1-Tw, but depends significantly on the velocity of the flame which contacts the wall surface.
Technical Paper

Effects of Lubricating Oil Supply on Reductions of Piston Slap Vibration and Piston Friction

2001-03-05
2001-01-0566
This study has been conducted aiming at reductions of piston slap noise and piston friction loss, and effects of lubricating oil supply between the piston skirt and cylinder on diesel engine have been verified through a series of experiments. Namely, lubricating oil was supplied forcibly into the piston skirt from outside of engine, and its effects on the cylinder block vibration, piston friction force, slap motion and oil consumption have been measured. As a result, it has been verified that the supply of a small amount of oil (6mL/min) to the piston skirt reduces about 50 % of the block vibration caused by the piston slap motion in idling operation, and about 20 % of the piston friction loss in full load operation. Furthermore it has verified without giving any significant adverse effect on oil consumption.
Technical Paper

Friction and Lubrication Characteristics of Piston Pin Boss Bearings of an Automotive Engine

1997-02-24
970840
The aim of this research was to analyze the lubrication conditions of piston pin boss bearings used in the press-fit piston pins of automobile gasoline engines. An original pin boss friction measuring device was developed and used to successfully obtain measurements. It was revealed that the friction force peaks twice every cycle at high engine loads, and non-fluid lubrication characteristics are displayed. The friction forces for various differing piston pins and pin boss bearings were analyzed, and it was shown that reducing piston pin length or thickness to reduce piston weight, or reducing the pin boss bearing clearance to reduce noise worsen the friction characteristics and increase the possibility of abnormal bearing friction as well as seizure.
Technical Paper

HCCI Combustion Characteristics of Hydrogen and Hydrogen-rich Natural Gas Reformate Supported by DME Supplement

2006-04-03
2006-01-0628
Hydrogen is expected to be a clean and energy-efficient fuel for the next generation of power sources because it is CO2-free and has excellent combustion characteristics. In this study, an attempt was made to apply Homogeneous Charge Compression Ignition (HCCI) combustion to hydrogen with the aim of achieving low oxides of nitrogen (NOx) emissions and high fuel economy with the assistance of the di-methyl-ether (DME) fuel supplement. As a result, HCCI combustion of hydrogen mixed with 25 vol% DME achieved approximately a 30% improvement in fuel economy compared with HCCI of pure DME and spark-ignited lean-burn combustion of pure hydrogen under almost zero NOx emissions and low hydrocarbon (HC) emissions. This is attributed to control of the combustion process to attain the optimum onset of combustion and to a reduction of cooling losses.
Technical Paper

Heat Transfer into Ceramic Combustion Chamber Wall of Internal Combustion Engines

1986-09-01
861276
The authors developed the optimum thin film thermocouples in terms of materials, shape and dimensions to make instantaneous surface temperature and heat flux measurements of combustion chamber wall in internal combustion engines with accuracy by the computer analysis. And they succeeded to make thin film thermocouple in ceramic piston, by the application of the above technique. Then, the instantaneous surface temperature was measured to obtained the instantaneous heat flux on the ceramic plate fixed on top of the piston.
Technical Paper

Heat Transfer into Ceramic Combustion Wall of Internal Combustion Engines

1987-02-01
870153
A thin film thermocouple with a high accuracy was developed by means of computer analysis, which allowed measurements of instantaneous temperatures and heat fluxes on combustion chamber walls. Conventional Al-alloy and ceramic plates were compared in terms of the heat loss at the upper surface of each piston during combustion, using a gasoline engine and a diesel engine in the series of experiments. It was found by the comparison that the ceramic plates subjected to higher temperatures had greater heat losses in both the gasoline and diesel engines contrary to the anticipation.
Technical Paper

Hydrogen Combustion Study in Direct Infection Hot Surface Ignition Engine

1986-10-01
861579
The hydrogen combustion characteristics have been studied in a late-injection (near TDC) hot surface ignition engine. As a supplemental experiment, the mode of combustion was observed in a constant volume combustion chamber by the schlieren method. Consequently the combustion process, that was the flame propagation initiated by a hot surface through heterogeneous hydrogen jets, was not the same as that of a diesel engine. The experimental results in test engine showed the optimum number of injection holes and the effect of intake air swirl for better mixture formation. It was observed that the combustion was frequently accompanied by non-negligible combustion pressure vibrations at all engine operating conditions.
Technical Paper

Improvement of Piston Lubrication in a Diesel Engine By Means of Cylinder Surface Roughness

2004-03-08
2004-01-0604
Aiming at the improvement in piston lubrication and the reduction of piston friction loss under this study, piston friction forces of cylinders with different surface roughness and treatment methods have been measured by means of a floating liner method, and the piston surface conditions have been also observed. As a result, it is found that the piston lubrication can be markedly improved by reducing the cylinder surface roughness. It is also verified that the deterioration in lubrication can be reduced even if some low viscosity oil is used, and the effect on the friction loss reduction becomes greater by reducing the piston surface roughness. On the other hand, it is found that many small vertical flaws are generated on the cylinder surface by reducing the surface roughness. In order to cope with this problem, etching and DLC (Diamond Like Carbon) coating have been tested as the surface treatments. As a result, it is confirmed that DLC coating is effective for the above.
Technical Paper

Influence of Clearance Between Piston and Cylinder on Piston Friction

1988-10-01
881621
It is desired to minimize clearance between the piston and the cylinder to reduce noise and suppress vibration. Although significant effort has been made for this purpose, increased piston friction force and the occurrence of seizure still prevent the ideal clearance from being realized. In order to determine the lower limit of the piston clearance, it is crucial to clarify the following unknowns; which part of piston contributes to friction increase as the piston clearance is decreased, during which phase of the piston motion the friction increase occurs, and how the piston clearance affects lubrication phenomena. Measurements of piston friction force under operating conditions were made by applying the Floating Liner Method(1),(2)* to a single-cylinder test gasoline engine. The measurement revealed how the piston friction varied as the piston clearance decreased. Lateral motion of the piston was also measured.
X