Refine Your Search

Author

Search Results

Technical Paper

An Examination of Spray Stochastics in Single-Hole Diesel Injectors

2015-09-01
2015-01-1834
Recent advances in x-ray spray diagnostics at Argonne National Laboratory's Advanced Photon Source have made absorption measurements of individual spray events possible. A focused x-ray beam (5×6 μm) enables collection of data along a single line of sight in the flow field and these measurements have allowed the calculation of quantitative, shot-to-shot statistics for the projected mass of fuel sprays. Raster scanning though the spray generates a two-dimensional field of data, which is a path integrated representation of a three-dimensional flow. In a previous work, we investigated the shot-to-shot variation over 32 events by visualizing the ensemble standard deviations throughout a two dimensional mapping of the spray. In the current work, provide further analysis of the time to steady-state and steady-state spatial location of the fluctuating field via the transverse integrated fluctuations (TIF).
Technical Paper

Analysis of the Spray Numerical Injection Modeling for Gasoline Applications

2020-04-14
2020-01-0330
The modeling of fuel jet atomization is key in the characterization of Internal Combustion (IC) engines, and 3D Computational Fluid Dynamics (CFD) is a recognized tool to provide insights for design and control purposes. Multi-hole injectors with counter-bored nozzle are the standard for Gasoline Direct Injection (GDI) applications and the Spray-G injector from the Engine Combustion Network (ECN) is considered the reference for numerical studies, thanks to the availability of extensive experimental data. In this work, the behavior of the Spray-G injector is simulated in a constant volume chamber, ranging from sub-cooled (nominal G) to flashing conditions (G2), validating the models on Diffused Back Illumination and Phase Doppler Anemometry data collected in vaporizing inert conditions.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

Determination of Diesel Spray Axial Velocity Using X-Ray Radiography

2007-04-16
2007-01-0666
Present knowledge of the velocity of the fuel in diesel sprays is quite limited due to the obscuring effects of fuel droplets, particularly in the high-density core of the spray. In recent years, x-ray radiography, which is capable of penetrating dense fuel sprays, has demonstrated the ability to probe the structure of the core of the spray, even in the dense near-nozzle region. In this paper, x-ray radiography data was used to determine the average axial velocity in diesel sprays as a function of position and time. Here, we report the method used to determine the axial velocity and its application to three common-rail diesel sprays at 250 bar injection pressure. The data show that the spray velocity does not reach its steady state value near the nozzle until approximately 200 μs after the start of injection. Moreover, the spray axial velocity decreases as one moves away from the spray orifice, suggesting transfer of axial momentum to the surrounding ambient gas.
Technical Paper

Development Process of Shock Waves by Supersonic Spray

2004-03-08
2004-01-1769
A numerical simulation of shock wave generation by high-pressure and high-speed spray jet has been conducted to compare to the experimental results obtained by X-ray radiographic technique. Using the space-time conservation element solution element (CESE) method and the stochastic particle techniques to account for fuel injections and droplet collisions, supersonic-spray-induced shock waves are successfully simulated. Similar to the experimental condition, a non-evaporating diesel spray in a chamber filled with inert gas sulfur hexafluoride (SF6) at 1 atm pressure under room temperature (30° C) is simulated. To simulate the needle lift effect in the single-hole diesel injector, various injection-rate profiles were employed. In addition, the effects of discharge coefficients, with Cd ranging from 0.8 to 1.0, were also considered to simulate the shock generation processes in the leading spray front.
Technical Paper

Durability Study of a Light-Duty High Pressure Common Rail Fuel Injection System Using E10 Gasoline

2020-04-14
2020-01-0616
A 500-hour test cycle has been used to evaluate the durability of a prototype high pressure common rail injection system operating up to 1800 bar with E10 gasoline. Some aspects of the original diesel based hardware design were optimized in order to accommodate an opposed-piston, two-stroke engine application and also to mitigate the impacts of exposure to gasoline. Overall system performance was maintained throughout testing as fueling rate and rail pressure targets were continuously achieved and no physical damage was observed in the low-pressure components. Injectors showed no deviation in their flow characteristics after exposure to gasoline and high resolution imaging of the nozzle spray holes and pilot valve assemblies did not indicate the presence of cavitation damage. The high pressure pump did not exhibit any performance degradation during gasoline testing and teardown analysis after 500 hours showed no evidence of cavitation erosion.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Journal Article

Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry

2018-04-03
2018-01-0303
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Journal Article

Fabrication and Characterization of Micro-Orifices for Diesel Fuel Injectors

2008-06-23
2008-01-1595
Stringent emission standards are driving the development of diesel-fuel injection concepts to mitigate in-cylinder formation of particulates. While research has demonstrated significant reduction in particulate formation using micro-orifice technology, implementation requires development of industrial processes to fabricate micro-orifices with diameters as low as 50 μm and with large length-to-diameter ratios. This paper reviews the different processes being pursued to fabricate micro-orifices and the advanced techniques applied to characterize the performance of micro-orifices. The latter include the use of phase-contrast x-ray imaging of electroless nickel-plated micro-orifices and laser imaging of fuel sprays at elevated pressures. The experimental results demonstrate an industrially viable process to create small uniform orifices that improve spray formation for fuel injection.
Journal Article

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

2015-04-14
2015-01-0931
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Journal Article

Quantification of Shot-to-Shot Variation in Single Hole Diesel Injectors

2015-04-14
2015-01-0936
Recent advancements in x-ray radiography diagnostics for direct injection sprays at Argonne's Advanced Photon Source have allowed absorption measurements of individual spray events, in addition to ensemble-averaged measurements. These measurements offer insight into the shot-to-shot variation of these sprays in the near-nozzle, spray formation region. Three single hole diesel injectors are studied across various injection and ambient pressures, spanning 14 different conditions. We calculated two dimensional maps of the standard deviation in line of sight mass distribution between individual spray events. These illuminated the spatial and temporal extent of variability between spray events. Regions of large fluctuations were observed to move downstream during the initial spray period and reached a steady state location after this initial transient.
Technical Paper

Quantitative Characterization of Near-Field Fuel Sprays by Multi-Orifice Direct Injection Using Ultrafast X-Tomography Technique

2006-04-03
2006-01-1041
A low-pressure direct injection fuel system for spark ignition direct injection engines has been developed, in which a high-turbulence nozzle technology was employed to achieve fine fuel droplet size at a low injection pressure around 2 MPa. It is particularly important to study spray characteristics in the near-nozzle region due to the immediate liquid breakup at the nozzle exit. By using an ultrafast x-ray area detector and intense synchrotron x-ray beams, the interior structure and dynamics of the direct injection gasoline sprays from a multi-orifice turbulence-assisted nozzle were elucidated for the first time in a highly quantitative manner with μs-temporal resolution. Revealed by a newly developed, ultrafast computed x-microtomography technique, many detailed features associated with the transient liquid flows are readily observable in the reconstructed spray.
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
Technical Paper

Shock Waves Generated by High-Pressure Fuel Sprays Directly Imaged by X-Radiography

2002-06-03
2002-01-1892
Synchrotron x-radiography and a novel fast x-ray detector are used to visualize the detailed, time-resolved structure of the fluid jets generated by a high pressure diesel-fuel injection. An understanding of the structure of the high-pressure spray is important in optimizing the injection process to increase fuel efficiency and reduce pollutants. It is shown that x-radiography can provide a quantitative measure of the mass distribution of the fuel. Such analysis has been impossible with optical imaging due to the multiple-scattering of visible light by small atomized fuel droplets surrounding the jet. In addition, direct visualization of the jet-induced shock wave proves that the fuel jets become supersonic under appropriate injection conditions. The radiographic images also allow quantitative analysis of the thermodynamic properties of the shock wave.
Journal Article

Time-Resolved X-Ray Radiography of Spark Ignition Plasma

2016-04-05
2016-01-0640
Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
Technical Paper

Time-Resolved and Quantitative Characterization of Highly Transient Gasoline Sprays by X-Radiography

2002-06-03
2002-01-1893
Using synchrotron x-radiography and mass deconvolution techniques, this work reveals strikingly interesting structural and dynamic characteristics of the direct injection (DI) gasoline hollow-cone sprays in the near-nozzle region. Employed to measure the sprays, x-radiography allows quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 μs, revealing the most detailed near-nozzle mass distribution of a DI gasoline fuel spray ever detected. Based on the x-radiographs of the spray collected from four different perspectives, enhanced mathematical and numerical analyses were developed to deconvolute the mass density of the gasoline hollow-cone spray. This leads to efficient and accurate regression curve fitting of the measured experimental data to obtain essential parameters of the density distribution that are then used in reconstructing the cross-sectional density distribution at various times and locations.
Journal Article

Time-resolved X-ray Tomography of Gasoline Direct Injection Sprays

2015-09-01
2015-01-1873
Quantitative measurements of direct injection fuel spray density and mixing are difficult to achieve using optical diagnostics, due to the substantial scattering of light and high optical density of the droplet field. For multi-hole sprays, the problem is even more challenging, as it is difficult to isolate a single spray plume along a single line of sight. Time resolved x-ray radiography diagnostics developed at Argonne's Advanced Photon Source have been used for some time to study diesel fuel sprays, as x-rays have high penetrating power in sprays and scatter only weakly. Traditionally, radiography measurements have been conducted along any single line of sight, and have been applied to single-hole and group-hole nozzles with few plumes. In this new work, we extend the technique to multi-hole gasoline direct injection sprays.
X