Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Method for the Characterization of Off-Road Terrain Severity

2006-10-31
2006-01-3498
Highway and roadway surface measurement is a practice that has been ongoing for decades now. This sort of measurement is intended to ensure a safe level of road perturbances. The measurement may be conducted by a slow moving apparatus directly measuring the elevation of the road, at varying distance intervals, to obtain a road profile, with varying degrees of resolution. An alternate means is to measure the surface roughness at highway speeds using accelerometers coupled with high speed distance measurements, such as laser sensors. Vehicles out rigged with such a system are termed inertial profilers. This type of inertial measurement provides a sort of filtered roadway profile. Much research has been conducted on the analysis of highway roughness, and the associated metrics involved. In many instances, it is desirable to maintain an off-road course such that the course will provide sufficient challenges to a vehicle during durability testing.
Journal Article

An Experimental Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port

2013-04-08
2013-01-0561
The flow field resulting from injecting a gas jet into a crossflow confined in a narrow square duct has been studied under steady regime using schlieren imaging and laser Doppler velocimetry (LDV). This transparent duct is intended to simulate the intake port of an internal combustion engine fueled by gaseous mixture, and the jet is issued from a round nozzle. The schlieren images show that the relative small size of the duct would confine the development of the transverse jet, and the interaction among jet and sidewalls strongly influences the mixing process between jet and crossflow. The mean velocity and turbulence fields have been studied in detail through LDV measurements, at both center plane and several cross sections. The well-known flow feature formed by a counter rotating vortex pair (CVP) has been observed, which starts to appear at the jet exit section and persists far downstream contributing to enhancing mixing process.
Technical Paper

Assessment of Actuator Line and Rotor Disk as Alternative Approaches for the Numerical Simulation of Rotating Wheels

2023-04-11
2023-01-0844
Wheel and wheelhouses contribute up to 20-30% of the aerodynamic drag of passenger cars. Simulating the flow field around wheels is challenging due to the complexity of the flow structures generated by tires and rims, wheel rotation, tire deformation and contact with the ground. High accuracy is usually obtained with transient simulations that treat rim rotation with the Sliding Mesh (SM) approach, which is also computationally expensive. Previous studies have confirmed that the application of a tangential velocity component to the rim surface is unphysical for open rims, while a Moving Reference Frame (MRF) is lacking accuracy and the averaged results depend on the initial spokes position. These methods do not consider the dynamic nature of the problem. This work proposes the use of the Actuator Line (AL) and Rotor Disk (RD) approaches as alternatives for simulating open rims with much lower computational cost.
Technical Paper

Effect of Gas Density and Temperature on Air Entrainment in a Transient Diesel Spray

1996-02-01
960862
The air entrainment in a transient diesel spray was studied using laser Doppler anemometry to provide information on the effect of gas density and temperature. The spray was injected vertically into a confined quiescent atmosphere and the entrained mass flow rate was evaluated by measuring the air velocity component normal to a cylindrical geometric surface surrounding the spray, and extending to about 200 nozzle diameters (50 mm). The experimental results, relative to a density range from 0.84 to 7.02 kg/m3 and a temperature range from 293 to 473 K, indicate that the non dimensional entrainment rate, averaged in time over the main injection period, depends on the distance from the nozzle and both gas density and temperature. A first analysis, based on the available data, allowed to quantify the dependence and provided a correlation with such variables.
Technical Paper

Identification of Agricultural Tyres' Handling Characteristics from Full Vehicle Experimental Tests

2014-04-01
2014-01-0874
For passenger cars, individual tyre model parameters, used in vehicle models able to simulate vehicle handling behavior, are traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure minimizing the error with respect to force and slip measurements. Indoor experiments on agricultural tyres are instead more challenging and thus generally not performed due to tyre size and applied forces. However, the knowledge of their handling characteristics is becoming more and more important since in the next few years, all agricultural vehicles are expected to run on ordinary asphalt roads at a speed of 80km/h. The present paper presents a methodology to identify agricultural tyres' handling characteristics based only on the measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed and steer angle) during standard handling maneuvers (step-steers, J-turns, etc.), instead than during indoor tests.
Technical Paper

In-Tyre Sensors Induced Benefits on Sideslip Angle and Friction Coefficient Estimation

2015-04-14
2015-01-1510
Aim of this study is to analyze the benefits of the measures provided by smart tyres on tyre-road friction coefficient and vehicle sideslip angle estimation. In particular, a smart tyre constituted by 2 tri-axial accelerometers glued on the tyre inner liner is considered which is able to provide the measures of the tyre-road contact forces once per wheel turn. These measures are added to the ones usually present onboard vehicle (steer angle, lateral acceleration and yaw rate) and following included into an Extended Kalman Filter (EKF) based on a single-track vehicle model. Performance of the proposed observer is evaluated on a series of handling maneuvers and its robustness to road bank angle, tyre and vehicle parameters variation is discussed.
Technical Paper

Industry 4.0 and Automotive 4.0: Challenges and Opportunities for Designing New Vehicle Components for Automated and/or Electric Vehicles

2019-04-02
2019-01-0504
The paper deals with the “wise sensorization” of vehicle components. In the upcoming full digitalization of mobility, vehicle components are getting more and more sensorized. The problem is why, what, when and where vehicle components can be sensorized. The paper attempts a preliminary problem statement for the sensorization of vehicle components. A theoretical basic investigation is introduced, setting the main concepts on which extended sensorization is advisable or not. The paradigms of Industry 4.0 and Automotive 4.0 are addressed, namely sensors are proposed to be used both for monitoring the manufacturing process and for monitoring the service life of the component. In general, sensors are proposed to be used for multiple purposes. Two examples of sensorized components are briefly presented. One refers to a sensorized electric motor, the other one refers to a sensorized wheel.
Technical Paper

Influence of Working Conditions and Operating Parameters on the Energy Consumption of a Full-Electric Bus. Experimental Assessment

2024-04-09
2024-01-2174
Given the growing interest in improving the efficiency of the bus fleet in public transportation systems, this paper presents an analysis of the energy consumption of a battery electric bus. During the experimental campaign, a battery electric bus was loaded using sand payloads to simulate the passenger load on board and followed another bus during regular service. Data related to the energy consumed by various bus utilities were published on the vehicle’s CAN network using the FMS standard and sampled at a frequency of 1 Hz. The collected experimental data were initially analyzed on a daily basis and then on a per-route basis. The results reveal the breakdown of energy consumption among various utilities over the course of each day of the experiment, highlighting those responsible for the highest energy consumption.
Technical Paper

LTV MPC Vehicle Model for Autonomous Driving in Limit Conditions

2015-04-14
2015-01-0315
The Linear Time Varying (LTV) Model Predictive Control (MPC) is a linear model predictive control based on linearization of the nonlinear vehicle model. The linearization is carried out consideing each vehicle state. The developed model is able to steer to avoid obstacles and follow a given path. Once the optimal parameters are found, both in terms of trajectory following and real-time performances, the LTV-MPC is used for assessing the limit vehicle conditions as a function of the vehicle forward target speed, the obstacle shape as well as the road conditions (both dry and wet road conditions were taken into account). It is shown that, to avoid collisions, given performances of the vehicle brakes and of the mounted sensors are required.
Journal Article

NLMPC for Real Time Path Following and Collision Avoidance

2015-04-14
2015-01-0313
This paper presents a nonlinear control approach to achieve good performances in vehicle path following and collision avoidance when the vehicle is driving under cruise highway conditions. Nonlinear model predictive control (NLMPC) is adopted to achieve online trajectory control based on a simplified vehicle model. GMRES/Continuation algorithm is used to solve the online optimization problem. Simulations show that the proposed controller is capable of tracking the desired path as well as avoiding the obstacles.
Technical Paper

New Equivalent Static Load (ESL) Creation Procedure for Complete Vehicle

2024-06-12
2024-01-2944
By analyzing the dynamic distortion in all body closure openings in a complete vehicle, a better understanding of the body characteristics can be achieved compared to traditional static load cases such as static torsional body stiffness. This is particularly relevant for non-traditional vehicle layouts and electric vehicle architectures. The body response is measured with the so-called Multi Stethoscope (MSS) when driving a vehicle on a rough pavé road (cobble stone). The MSS is measuring the distortion in each opening in two diagonals. During the virtual development, the distortion is described by the relative displacement in diagonal direction in time domain using a modal transient analysis. The results are shown as Opening Distortion Fingerprint ODF and used as assessment criteria within Solidity and Perceived Quality. By applying the Principal Component Analysis (PCA) on the time history of the distortion, a Dominant Distortion Pattern (DDP) can be identified.
Journal Article

Numerical and Experimental Investigation on Vehicles in Platoon

2012-04-16
2012-01-0175
Many studies have been carried out to optimize the aerodynamic performances of a single car or a single vehicle. In present days the traffic increases and sophisticated technologies are developing to guarantee the drivers safety, to minimize the fuel consumption and be more environmentally friendly. Within this research area a new technique that is being studied is Platooning: this means that different vehicles travel in a configuration that minimizes the aerodynamic drag and therefore the fuel consumption and the longitudinal space. In the present study platoons with different vehicles and configurations are taken into account, to analyze the influence of car shape and relative distance between the vehicles. The research has been carried out using CFD techniques to investigate the different flow fields around different platoons, while wind tunnel tests have been used to validate the results of the CFD simulations.
Technical Paper

On the Impact of the Maximum Available Tire-Road Friction Coefficient Awareness in a Brake-Based Torque Vectoring System

2010-04-12
2010-01-0116
Tire-road interaction is one of the main concerns in the design of control strategies for active/semi-active differentials oriented to improve handling performances of a vehicle. In particular, the knowledge of the friction coefficient at the tire-road interface is crucial for achieving the best performance in any working condition. State observers and estimators have been developed at the purpose, based on the measurements traditionally carried out on board vehicle (steer angle, lateral acceleration, yaw rate, wheels speed). However, until today, the problem of tire-road friction coefficient estimation (and especially of its maximum value) has not completely been solved. Thus, active control systems developed so far rely on a driver manual selection of the road adherence condition (anyway characterized by a rough and imprecise quality) or on a conservative tuning of the control logic in order to ensure vehicle safety among different tire-road friction coefficients.
Journal Article

Race Motorcycle Smart Wheel

2015-04-14
2015-01-1520
A wheel able to measure the generalized forces at the hub of a race motorcycle has been developed and used. The wheel has a very limited mass. It is made from magnesium with a special structure to sense the forces and provide the required level of stiffness. The wheel has been tested both indoor for preliminary approval and on the track. The three forces and the three moments acting at the hub can be measured with a resolution of 1N and 0.3Nm respectively. A specifically programmed DSP (Digital Signal Processor) embedded in the sensor allows real-time acquisition and processing of the six signals of forces/torques components. The signals are sent via Bluetooth to an onboard receiver connected to the vehicle CAN (Controller Area Network) bus. Each signal is sampled at 200Hz. The wheel can be used to derive the actual tyre characteristics or to record the loads acting at the hub.
Journal Article

Tire Ply-Steer, Conicity and Rolling Resistance - Analytical Formulae for Accurate Assessment of Vehicle Performance during Straight Running

2019-04-02
2019-01-1237
The aim of the paper is to provide simple and accurate analytical formulae describing the straight motion of a road vehicle. Such formulae can be used to compute either the steering torque or the additional rolling resistance induced by vehicle side-slip angle. The paper introduces a revised formulation of the Handling Diagram Theory to take into account tire ply-steer, conicity and road banking. Pacejka’s Handling Diagram Theory is based on a relatively simple fully non-linear single track model. We will refer to the linear part of the Handling Diagram, since straight motion will be considered only. Both the elastokinematics of suspension system and tire characteristics are taken into account. The validation of the analytical expressions has been performed both theoretically and after a subjective-objective test campaign. By means of the new and unreferenced analytical formulae, practical hints are given to set to zero the steering torque during straight running.
X