Refine Your Search

Topic

Author

Search Results

Technical Paper

A Review of Lattice Boltzmann Methods for Multiphase Flows Relevant to Engine Sprays

2005-04-11
2005-01-0996
This paper reviews some applications of lattice Boltzmann methods (LBM) to compute multiphase flows. The method is based on the solution of a kinetic equation which describes the evolution of the distribution of the population of particles whose collective behavior reproduces fluid behavior. The distribution is modified by particle streaming and collisions on a lattice. Modeling of physics at a mesoscopic level enables LBM to naturally incorporate physical properties needed to compute complex flows. In multiphase flows, the surface tension and phase segregation are incorporated by considering intermolecular attraction forces. Furthermore, the solution of the kinetic equations representing linear advection and collision, in which non-linearity is lumped locally, makes it parallelizable with relative ease. In this paper, a brief review of the lattice Boltzmann method relevant to engine sprays will be presented.
Technical Paper

Active Collision Avoidance System for E-Scooters in Pedestrian Environment

2024-04-09
2024-01-2555
In the dense fabric of urban areas, electric scooters have rapidly become a preferred mode of transportation. As they cater to modern mobility demands, they present significant safety challenges, especially when interacting with pedestrians. In general, e-scooters are suggested to be ridden in bike lanes/sidewalks or share the road with cars at the maximum speed of about 15-20 mph, which is more flexible and much faster than pedestrians and bicyclists. Accurate prediction of pedestrian movement, coupled with assistant motion control of scooters, is essential in minimizing collision risks and seamlessly integrating scooters in areas dense with pedestrians. Addressing these safety concerns, our research introduces a novel e-Scooter collision avoidance system (eCAS) with a method for predicting pedestrian trajectories, employing an advanced Long short-term memory (LSTM) network integrated with a state refinement module.
Technical Paper

Active Vibration Damping for Construction Machines Based on Frequency Identification

2016-09-27
2016-01-8121
Typically, earthmoving machines do not have wheel suspensions. This lack of components often causes uncomfortable driving, and in some cases reduces machine productivity and safety. Several solutions to this problem have been proposed in the last decades, and particularly successful is the passive solution based on the introduction of accumulators in the hydraulic circuit connecting the machine boom. The extra capacitance effect created by the accumulator causes a magnification of the boom oscillations, in such a way that these oscillations counter-react the machine oscillation caused by the driving on uneven ground. This principle of counter-reacting machine oscillations through the boom motion can be achieved also with electro-hydraulic solutions, properly actuating the flow supply to the boom actuators on the basis of a feedback sensors and a proper control strategy.
Technical Paper

Advanced Hydraulic Systems for Active Vibration Damping and Forklift Function to Improve Operator Comfort and Machine Productivity of Next Generation of Skid Steer Loaders

2016-09-27
2016-01-8116
Mobile Earth Moving Machinery like Skid-steer loaders have tight turning radius in limited spaces due to a short wheelbase which prevents the use of suspensions in these vehicles. The absence of a suspension system exposes the vehicle to ground vibrations of high magnitude and low frequency. Vibrations reduce operator comfort, productivity and life of components. Along with vibrations, the machine productivity is also hampered by material spillage which is caused by the tilting of the bucket due to the extension of the boom. The first part of the paper focuses on vibration damping. The chassis’ vibrations are reduced by the use of an active suspension element which is the hydraulic boom cylinder which is equivalent to a spring-damper. With this objective, a linear model for the skid steer loader is developed and a state feedback control law is implemented.
Technical Paper

An Experimentally Validated Physical Model of a High-Performance Mono-Tube Damper

2002-12-02
2002-01-3337
A mathematical model of a gas-charged mono-tube racing damper is presented. The model includes bleed orifice, piston leakage, and shim stack flows. It also includes models of the floating piston and the stiffness characteristics of the shim stacks. The model is validated with experimental tests on an Ohlins WCJ 22/6 damper and shown to be accurate. The model is exercised to show the effects of tuning on damper performance. The important results of the exercise are 1) the pressure variation on the compression side of the piston is insignificant relative to that on the rebound side because of the gas charge, 2) valve shim stiffness can be successfully modeled using stacked thin circular plates, 3) bleed orifice settings dominate the low speed regime, and 4) shim stack stiffness dominates the high speed regime.
Technical Paper

Analysis of Widespread Fatigue Damage in Lap Joints

1999-04-20
1999-01-1586
This paper describes research to analyze widespread fatigue damage in lap joints. The particular objective is to determine when large numbers of small cracks could degrade the joint strength to an unacceptable level. A deterministic model is described to compute fatigue crack growth and residual strength of riveted panels that contain multiple cracks. Fatigue crack growth tests conducted to evaluate the predictive model are summarized, and indicate good agreement between experimental and numerical results. Monte Carlo simulations are then performed to determine the influence of statistical variability on various analysis parameters.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Characterization of a Vibration Damping Mount

1999-09-13
1999-01-2816
Several available mathematical models for vibration dampers were compared to dynamic test results. The comparison results in a simple model that agrees well with both the magnitude and phase characteristics of experimentally obtained frequency response functions. The resulting model can be used as a correct boundary condition for finite element models of the structure to which the dampers are attached.
Technical Paper

Concepts of Human Factors Engineering

1969-02-01
690163
This paper discusses the necessity for designing farm tractors which have logical, rather than arbitrary, safety features. The paper is directed primarily to those who buy and use industrial equipment and urges this group to exercise their influence on tractor design by purchasing only those vehicles which meet recommended standards for safety and construction.
Technical Paper

Derivation of the Three-Dimensional Installation Ratio for Dual A-Arm Suspensions

2004-11-30
2004-01-3535
Conventional suspension analysis of three-dimensional suspensions typically use two-dimensional analyses. This is done by projecting suspension components onto two-dimensional planes and then performing a two-dimensional analysis in each of these orthogonal planes or neglecting motions in one of the planes entirely. This requires multiple iterations because changes in one plane require a checking of their effects on motion in the other orthogonal planes. In doing so, much of the insight and accuracy gained from a three-dimensional analysis can be lost. A three-dimensional kinematic analysis approach is presented and applied to a dual A-Arm suspension system. All motions are considered instantaneously about a screw axis instead of a point as used by the usual two-dimensional modeling approach. The model predicts deflections of suspension components in response to the three-dimensional forces present at the contact patch.
Journal Article

Detection of Pinion Grinding Defects in a Nested Planetary Gear System using a Narrowband Demodulation Approach

2021-08-31
2021-01-1100
Nested planetary gear trains, which consist of two integrated co-axial single-stage planetary gearsets, have recently been widely implemented in automobile transmissions and various other applications. In the current study, a non-destructive vibrational and acoustical monitoring technique is developed to detect a common type of gear grinding defect for a complex nested gear train structure. A nested gear train which has an unground pinion with unpolished teeth profile is used to exemplify the developed methodology. An experimental test stand with an open and vertical mounting configuration has been designed to acquire both vibrational and acoustical data. The measured data are investigated using several signal processing techniques to identify unground pinions in the gear system. A general frequency spectrum analysis is performed initially, which is then followed by a peak finding algorithm to identify the peaks in the spectrum.
Technical Paper

Developing Education and Outreach Initiatives at the Indiana Space Grant Consortium

2009-07-12
2009-01-2546
The Indiana Space Grant Consortium is one of 52 members of the National Space Grant College and Fellowship Program (“Space Grant”), which was initiated by NASA in 1988. Space Grant is designed to be a source of NASA-related information, awards, and programs to enhance education, outreach, and workforce development for the United States. Based on the land grant model of public university education, Space Grant seeks to spread the vision of NASA to increase science, technology, engineering, and math (STEM) awareness; NASA-related education; workforce development; outreach and research activities. This paper describes the evolution of these activities in Indiana.
Technical Paper

Dynamic Simulation Techniques for Steering of Tracked Agricultural and Forestry Vehicles

1999-09-13
1999-01-2786
A procedure for simulating the dynamics of agricultural and forestry machines using mechanical system simulation software is presented. A soil/track interface model including rubber-track and steel-track was introduced as well as equations that can be used to model mechanical and hydraulic power trains commonly found in tracked vehicles. Two rubber-tracked vehicles (agricultural tractors) and two steel-tracked machines (forestry vehicles) were simulated to illustrate the technique, and some analysis results are presented. The examples given in this paper are based on the author’s research over the past several years.
Technical Paper

Education and Outreach Program Designed for NASA Specialized Center of Research and Training in Advance Life Support (ALS/NSCORT)

2004-07-19
2004-01-2418
The NASA Specialized Center of Research and Training in Advanced Life Support (ALS/NSCORT) Education and Outreach Program is designed to engage audiences through concepts and technologies highlighted in the NSCORT research program. The outreach program is composed of three thrust areas. These areas are technical outreach (graduate education, technology transfer, presentations to industry, etc.), educational outreach (professional development, undergraduate, K-12), and public outreach (museums, state fairs, etc.) Program design of the technical and educational outreach began in January 2003. This paper reports anecdotal data on one ALS/NSCORT outreach program and gives a brief description of the other programs in their pilot stages. Technical and educational outreach programs developed to date include: 1) Summer Fellowship Research Program, 2) Distance Learning Course, 3) Key Learning Community Collaborative Project and 4) Mission to Mars.
Technical Paper

Equivalent System Mass of Producing Yeast and Flat Breads from Wheat Berries, A Comparison of Mill Type

2004-07-19
2004-01-2525
Wheat is a candidate crop for the Advanced Life Support (ALS) system, and cereal grains and their products will be included on long-term space missions beyond low earth orbit. While the exact supply scenario has yet to be determined, some type of post-processing of these grains must occur if they are shipped as bulk ingredients or grown on site for use in foods. Understanding the requirements for processing grains in space is essential for incorporating the process into the ALS food system. The ESM metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The objective of this study was to compare the impact of grain mill type on the ESM of producing yeast and flat breads. Hard red spring wheat berries were ground using a Brabender Quadrumat Jr. or the Kitchen-Aid grain mill attachment (both are proposed post-harvest technologies for the ALS system) to produce white and whole wheat flour, respectively.
Technical Paper

Excitation Strategies for a Wound Rotor Synchronous Machine Drive

2014-09-16
2014-01-2138
In this research, excitation strategies for a salient-pole wound rotor synchronous machine are explored using a magnetic equivalent circuit model that includes core loss. It is shown that the excitation obtained is considerably different than would be obtained using traditional qd-based models. However, through evaluation of the resulting ‘optimal’ excitation, a relatively straightforward field-oriented type control is developed that is consistent with a desire for efficiency yet control simplicity. Validation is achieved through hardware experiment. The usefulness/applicability of the simplified control to variable speed applications is then considered.
Journal Article

FE Simulation of Split in Fundamental Air-Cavity Mode of Loaded Tires: Comparison with Empirical Results

2021-08-31
2021-01-1064
Tire/road noise has become a significant issue in the automotive industry, especially for electric vehicles. Among the various tire/road noise sources, the air-cavity mode can amplify the forces transmitted from the tire to the suspension system causing noticeable cabin noise near 200 Hz. Furthermore, when the tire is deformed by loading, the fundamental air-cavity mode separates into two acoustic modes, a fore-aft mode and vertical mode due to the break in geometrical symmetry. This is important because the two components of the split mode can increase force levels at the hub by interacting with neighboring structural modes, thus resulting in increased interior noise levels. In this research, finite element simulations of five commercial tires at rated load were performed with a view to identifying the frequency split and its interaction with structural resonances. These results have been compared with previously obtained empirical results.
Technical Paper

Frequency Conversion Controlled Vapor Recovery System by Temperature and Flow Signals: Model Design and Parameters Optimization

2013-09-24
2013-01-2348
Current gasoline-gas vapor recovery system is incomplete, for it cannot adjust the vapor-liquid ratio automatically due to the change of working temperature. To solve this problem, this paper intends to design a new system and optimize its parameters. In this research, variables control method is used for tests while linear regression is used for data processing. This new system moves proportion valve away and adds a DSP control module, a frequency conversion device, and a temperature sensor. With this research, it is clearly reviewed that the vapor-liquid ratio should remains 1.0 from 0 °C to 20 °C as its working temperature, be changed into 1.1 from 20 °C to 25 °C, be changed into 1.2 from 25 °C to 30 °C, and be changed into 1.3 when the working temperature is above 30 °C.
Technical Paper

Health Monitoring for Condition-Based Maintenance of a HMMWV using an Instrumented Diagnostic Cleat

2009-04-20
2009-01-0806
Operation & support costs for military weapon systems accounted for approximately 3/5th of the $500B Department of Defense budget in 2006. In an effort to ensure readiness and decrease these costs for ground vehicle fleets, health monitoring technologies are being developed for Condition-Based Maintenance of individual vehicles within a fleet. Dynamics-based health monitoring is used in this work because vibrations are a passive source of response data, which are global functions of the mechanical loading and properties of the vehicle. A common way of detecting faults in mechanical equipment, such as the suspension and chassis of a ground vehicle, is to compare measured operational vibrations to a reference (or healthy) signature to detect anomalies.
Technical Paper

High Performance Actuation System Enabled by Energy Coupling Mechanism

2013-09-24
2013-01-2344
This paper introduces a high performance actuation mechanism to enable new systems and improve the performance and efficiency of existing systems. The concept described is based on coupling energy storage mechanisms with translational movement to increase the speed and controllability of linear actuators. Initial development is a high speed linear actuator for hydraulic proportional valves, and the concept can be extended into other applications. With high speed proportional valves, the performance of existing cam phasing systems can be improved or the actuation mechanisms can be applied directly to IC engine valve actuation. Other applications include active suspension control valves, transmission control valves, industrial and commercial vehicle fluid power systems, and fuel injection systems. The stored actuation energy (such as a rotating mass) is intermittently coupled and decoupled to produce linear or rotary motion in the primary actuator.
X