Refine Your Search

Topic

Author

Search Results

Journal Article

A Miller Cycle Engine without Compromise - The Magma Concept

2017-03-28
2017-01-0642
The Magma engine concept is characterised by a high compression ratio, central injector combustion system employed in a downsized direct-injection gasoline engine. An advanced boosting system and Miller cycle intake-valve closing strategies are used to control combustion knock while maintaining specific performance. A key feature of the Magma concept is the use of high CR without compromise to mainstream full-load performance levels. This paper focuses on development of the Magma combustion system using a single-cylinder engine, including valve event, air motion and injection strategies. Key findings are that Early Intake Valve Closing (EIVC) is effective both in mitigating knock and improving fuel consumption. A Net Indicated Mean Effective Pressure (NIMEP) equivalent to 23.6 bar Brake Mean Effective Pressure (BMEP) on a multi-cylinder engine has been achieved with a geometric compression ratio of 13:1.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Semi-Empirical Model for Fast Residual Gas Fraction Estimation in Gasoline Engines

2006-10-16
2006-01-3236
Accurate accounting for fresh charge (fuel and air) along with trapped RGF is essential for the subsequent thermodynamic analysis of combustion in gasoline engines as well as for on-line and real-time quantification as relevant to engine calibration and control. Cost and complexity of such techniques renders direct measurement of RGF impractical for running engines. In this paper, an empirically-based approach is proposed for on-line RGF, based on an existing semi-empirical model [1]. The model developed expands the range over which the semi-empirical model is valid and further improves its accuracy. The model was rigorously validated against a well correlated GT-POWER model as well as results from 1D gas exchange model [2]. Overall, using this model, RGF estimation error was within ∼1.5% for a wide range of engine operating conditions. The model will be implemented in Dyno development and calibration at Chrysler Group.
Video

Advanced Combustion & System Engineering - Affordable Fuel Economy?

2012-05-10
Future fuel economy targets represent a significant challenge to the automotive industry. While a range of technologies are in research and development to address this challenge, they all bring additional cost and complexity to future products. The most cost effective solutions are likely to be combinations of technologies that in isolation might have limited advantages but in a systems approach can offer complementary benefits. This presentation describes work carried out at Ricardo to explore Intelligent Electrification and the use of Stratified Charge Lean Combustion in a spark ignition engine. This includes a next generation Spray Guided Direct Injection SI engine combustion system operating robustly with highly stratified dilute mixtures and capable of close to 40% thermal efficiency with very low engine-out NOx emissions.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

Correlating an Air Motion Number to Combustion Metrics and Initial Flame Kernel Development

2007-04-16
2007-01-0653
This study attempts to develop a correlation between an airflow motion number, combustion burn rates, and initial flame kernel development. To accomplish this task, several motion plates were evaluated on a flowbench in order to calculate a motion number that would represent the dynamic motion in the combustion chamber. Afterwards, the plates were tested on a spark ignited engine at several part throttle conditions while gathering cylinder pressure measurements. These cylinder pressure measurements would then yield the combustion burn rates for each plate. In addition to the combustion measurements, the flame kernel growth, velocity and direction of the flame kernel were measured using an AVL Visio-flame. Finally, the data was evaluated and an attempt to correlate the motion number of the plates to the different measurements for describing combustion was made.
Technical Paper

Design of a Rapid Prototyping Engine Management System for Development of Combustion Feedback Control Technology

2006-04-03
2006-01-0611
Combustion feedback using cylinder pressure sensors, ion current sensors or alternative sensing techniques is actively under investigation by the automotive industry to meet future legislative emissions requirements. One of the drawbacks of many rapid prototyping engine management systems is their available analog interfaces, often limited to 10-12 bits with limited bandwidth, sampling rate and very simple anti-aliasing filters. Processing cylinder pressure or other combustion feedback sensors requires higher precision, wider bandwidths and more processing power than is typically available. For these reasons, Ricardo in collaboration with GM Research has developed a custom, high precision analog input subsystem for the rCube rapid prototyping control system that is specifically targeted at development of combustion feedback control systems.
Technical Paper

Detailed Modeling of Liquid Fuel Sprays in One-Dimensional Gas Flow Simulation

2004-10-25
2004-01-3000
In internal combustion engines, liquid fuel injection is one of the most prevalent means of fuel delivery and air-fuel mixture preparation. The behavior of the fuel spray and wall film is a key factor in determining air-fuel mixing and hence combustion and emissions. A comprehensive model for the liquid fuel spray has been developed in conjunction with the one-dimensional gas flow code WAVE. The model includes droplet dynamics and evaporation, spray-wall impingement, wall film dynamics and evaporation. The fuel injector can be placed in the manifold, inlet port or cylinder. Liquid fuel droplets are injected with a prescribed size distribution, and their subsequent movement and vaporization are modeled via the discrete particle approach, frequently used in multi-dimensional CFD codes. This approach ensures conservation of mass, momentum and energy between the gas and liquid phases.
Technical Paper

Development of Truck Engine Technologies for Use with Fischer-Tropsch Fuels

2001-09-24
2001-01-3520
The Fischer-Tropsch (FT) process can be used to synthesize diesel fuels from a variety of energy sources, including coal, natural gas and biomass. Diesel fuels produced from the FT process are essentially sulfur-free, have very low aromatic content, and have excellent ignition characteristics. Because of these favorable attributes, FT diesel fuels may offer environmental benefits over transportation fuels derived from crude oil. Previous tests have shown that FT diesel fuel can be used in unmodified engines and have been shown to lower regulated emissions. Whereas exhaust emissions reductions from these previous studies have been impressive, this paper demonstrates that far greater exhaust emissions reductions are possible if the diesel engine is optimized to exploit the properties of the FT fuels. A Power Stroke 7.3 liter turbocharged diesel engine has been modified for use with FT diesel.
Technical Paper

Evaluation of Cylinder Pressure Transducer Accuracy based upon Mounting Style, Heat Shields, and Watercooling

2005-10-24
2005-01-3750
This investigation evaluated different pressure transducers in one cylinder to examine the combustion measurement differences between them simultaneously. There were a total of eleven transducers ranging in both diameter and type of transducer (piezo-electric, piezoresistive, and optical). Furthermore, the sensors differed in the methodology for minimizing signal distortion due to temperature. This methodology could take the form of various size mounting passages, heat shields, watercooling or heat transfer paths. To evaluate the sensors, different engine operating conditions were conducted, focusing at full load and low speeds. Other hardware configurations of the same engine family were used to exaggerate the combustion environment, specifically a tumble-motion plate and turbocharging.
Journal Article

Expanding the Experimental Capabilities of the Ignition Quality Tester for Autoigniting Fuels

2010-04-12
2010-01-0741
This paper reports the development of new fuel ignition quality and combustion experiments performed using the Ignition Quality Tester (IQT). Prior SAE papers (961182, 971636, 1999-01-3591, and 2001-01-3527) documented the development of the IQT constant volume combustion chamber experimental apparatus to measure ignition qualities of diesel-type fuels. The ASTM International test method D6890 was developed around the IQT device to allow the rapid determination of derived cetane number (DCN). Interest in chemical kinetic models for the ignition of diesel and biodiesel model compounds is increasing to support the development of advanced engines and fuels. However, rigorous experimental validation of these kinetic models has been limited for a variety of reasons. Shock tubes and rapid compression machines are typically limited to premixed gas-phase studies, for example.
Journal Article

Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization

2016-04-05
2016-01-0836
The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity.
Technical Paper

Fuel Effects in a Boosted DISI Engine

2011-08-30
2011-01-1985
Due to the recent drive to reduce CO₂ emissions, the turbocharged direct injection spark ignition (turbo DISI) gasoline engine has become increasingly popular. In addition, future turbo DISI engines could incorporate a form of charge dilution (e.g., lean operation or external EGR) to further increase fuel efficiency. Thus, the conditions experienced by the fuel before and during combustion are and will continue to be different from those experienced in naturally aspirated SI engines. This work investigates the effects of fuel properties on a modern and prototype turbo DISI engine, with particular focus on the octane appetite: How relevant are RON and MON in predicting a fuel's anti-knock performance in these modern/future engines? It is found that fuels with high RON and low MON values perform the best, suggesting the current MON requirements in fuel specifications could actually be detrimental.
Journal Article

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

2009-11-02
2009-01-2769
The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and1H/13C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT™) apparatus.
Technical Paper

Hydrogen Blended Natural Gas Operation of a Heavy Duty Turbocharged Lean Burn Spark Ignition Engine

2004-10-25
2004-01-2956
A turbocharged lean burn natural gas engine was upgraded to operate on a blend of hydrogen and natural gas (HCNG). Tests were carried out to determine the most suitable H2/NG blend for H2 fractions between 20 and 32 vol%. A 20 vol% H2 content was found to provide the desired benefits when taking into consideration the engine and vehicle performance attributes. A full engine map was developed for the chosen mixture, and was verified over the steady-state AVL8 cycle. In general, the HCNG calibration included operation at higher air-fuel ratios and retarded spark timings. The results indicated that the NOx and NMHC emissions were reduced by 50% and 58% respectively, while the CO and CH4 emissions were slightly reduced. The HCNG engine torque, power and fuel consumption were maintained the same as for the natural gas fuel. The chassis dynamometer transient testing confirmed large NOx reduction of about 56% for HCNG operation.
Technical Paper

Impacts of Biofuel Blending on MCCI Ignition Delay with Review of Methods for Defining Cycle-by-Cycle Ignition Points from Noisy Cylinder Pressure Data

2021-04-06
2021-01-0497
Conventional diesel combustion, also known as Mixing-Controlled Compression Ignition (MCCI), is expected to be the primary power source for medium- and heavy-duty vehicles for decades to come. Displacing petroleum-based ultra-low-sulfur diesel (ULSD) as much as possible with low-net-carbon biofuels will become necessary to help mitigate effects on climate change. Neat biofuels may have difficulty meeting current diesel fuel standards but blends of 30% biofuel in ULSD show potential as ‘drop-in’ fuels. These blends must not make significant changes to the combustion phasing of the MCCI process if they are to be used interchangeably with neat ULSD. An important aspect of MCCI phasing is the ignition delay (ID), i.e. the time between the start of fuel injection and the initial premixed autoignition that initiates the MCCI process.
Technical Paper

Journal Bearing Analysis in Engines Using Simulation Techniques

2003-03-03
2003-01-0245
This paper describes the features and capabilities of a comprehensive yet flexible computational tool ORBIT developed for analyzing journal bearings (e.g. connecting rod bearings and crankshaft bearings) in internal combustion engines. Several techniques for solving the hydrodynamic Reynolds Equation have been developed within this methodology which can be used appropriately by bearing designers/analysts depending on the level of detail required. Besides ideal circular bearings, this simulation tool also enables the analyst to consider the influence of a) non-circular journal bearing geometry, b) oil-feed holes/grooves, c) surface roughness, d) journal misalignment, e) rise in oil temperature and f) bearing elasticity effects (EHL) on bearing performance. The capabilities of the simulation code are demonstrated through a series of validation and case studies.
Journal Article

Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine

2016-04-05
2016-01-0705
Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions.
Technical Paper

Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

2018-04-03
2018-01-0361
A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol’s high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recently through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion.
Journal Article

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

2013-09-24
2013-01-2471
Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption.
X