Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A Dynamic Test Procedure for Evaluation of Tripped Rollover Crashes

2002-03-04
2002-01-0693
Rollover crashes have continued to be a source of extensive research into determining both vehicle performance, and occupant restraint capabilities. Prior research has utilized various test procedures, including the FMVSS 208 dolly fixture, as a basis for evaluating vehicle and restraint performance. This research, using 2001 Nissan Pathfinder sport utility vehicles (SUVs), was conducted to update the status of passenger vehicle rollover testing, and evaluate dynamic test repeatability with a new test procedure. A series of eight rollover tests was conducted using these SUV vehicles, mounted on a modified FMVSS 208 rollover dolly fixture, with instrumented dummies in both front seat positions. This test protocol involved launching the vehicles horizontally, after snubbing the dolly fixture, and having the leading-side tires contact curbing for a trip mechanism.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Motor-Drive System Design That Takes Into Account EV Characteristics

1999-03-01
1999-01-0739
This paper discusses various design factors that must be considered in achieving a practical motor-drive system for electric vehicles. When we design a motor-drive system for an electric vehicle, pursuit of high efficiency is required, and the system also has to have a good ease of use in practical situation. The following configuration is preferable for the realization of the vehicle that meets these requirements (1) A direct- coupled geartrain is used. (2) A permanent magnet synchronous motor is used as the traction motor. (3) The motor is inverter driven (battery operated) (4) A controller is needed to manage torque characteristics. When we design the motor-drive system using these configuration, we have to resolve various issues of the system concerning the vehicle and drive system performance fir practical use. By resolving these design issues, the practical performance of EVs can be improved and they can also make full use of the advantages of a motor-drive system.
Technical Paper

A New Approach to Finding Optimum Planetary Gear Trains for Automatic Transmissions

1993-03-01
930676
There has been a growing need to develop more compact automatic transmissions with a greater number of speeds for better fuel economy and better driveability. This study investigated a method for determining suitable planetary gear trains for today's transmissions. A computer program has been developed for application to five-speed transmissions consisting of two planetary gearsets. By analyzing various gear train possibilities, the program can identify which gearsets are suitable for different conditions, including the number of speeds, the number of binding elements, topological suitability and other factors.
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Technical Paper

A New System for Independently Controlling Braking Force Between Inner and Outer Rear Wheels

1989-02-01
890835
This paper presents a new system for controlling the braking force between the inner and outer wheels in a turn independently. Vehicle cornering performance has improved noticeably in recent years thanks to advances achieved in tire and suspension technology. Due to this improvement, vehicle handling characteristics during braking have taken on added importance. To achieve stabler handling properties during braking in a turn, a new evaluation method is being used at Nissan to analyze vehicle directional stability. The analytical results show that decreasing the yaw moment before wheel locking occurs is effective in achieving stabler handling. An effective approach to decreasing the yaw moment is to control the braking force between the inner and outer wheels independently. Base on these analytical results and experimental data obtained with actual vehicles, a new system has been developed that provides such independent control over the braking force.
Technical Paper

A Robotic Driver on Roller Dynamometer with Vehicle Performance Self Learning Algorithm

1991-02-01
910036
A robotic driver has been designed on the basis of an analysis of a human driver's action in following a given driving schedule. The self-learning algorithm enables the robot to learn the vehicle characteristics without human intervention. Based on learned relationships, the robotic driver can determine an appropriate accelerator position and execute other operations through sophisticated calculations using the future scheduled vehicle speed and vehicle characteristics data. Compensation is also provided to minimize vehicle speed error. The robotic driver can reproduce the same types of exhaust emission and fuel economy data obtained with human drivers with good repeatability. It doesn't require long preparation time. Thereby making it possible to reduce experimentation work in the vehicle development process while providing good accuracy and reliability.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Technical Paper

A Study of a Gasoline-Fueled Near-Zero-Emission Vehicle Using an Improved Emission Measurement System

1998-10-19
982555
This paper concerns research on an emission control system aimed at reducing emission levels to well below the ULEV standards. As emission levels are further reduced in the coming years, it is projected that measurement error will increase substantially. Therefore, an analysis was made of the conventional measurement system, which revealed the following major problems. 1. The conventional analyzer, having a minimum full-scale THC range of 10 ppmC, cannot measure lower concentration emissions with high accuracy. 2. Hydrocarbons are produced in various components of the measurement system, increasing measurement error. 3. Even if an analyzer with a minimum full-scale THC range of 1 ppmC is used in an effort to measure low concentrations, the 1 ppmC measurement range cannot be applied when the dilution air contains a high THC concentration. This makes it impossible to obtain highly accurate measurements. 4.
Technical Paper

A Study of a Gasoline-fueled HCCI Engine∼Mode Changes from SI Combustion to HCCI Combustion∼

2008-04-14
2008-01-0050
Since the stable operating region of a gasoline-fueled HCCI engine is limited to the part load condition, a mode change between SI and HCCI combustion is required, which poses an issue due to the difference in combustion characteristics. This report focuses on the combustion characteristics in the transitional range. The combustion mode in the transitional range is investigated by varying the internal EGR rate, intake air pressure, and spark advance timing in steady-state experiments. In this parametric study, stable SI-CI combustion is observed. This indicates that the combustion mode transition is possible without misfiring or knocking, regardless of the speed of variable valve mechanism which includes VVA, VVEL, VTEC, VVL and so on, though the response of intake air pressure still remains as a subject to be examined in the actual application.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Technical Paper

A Study of a Practical Numerical Analysis Method for Heat Flow Distribution in the Engine Compartment

1993-04-01
931081
The thermal environment in the automotive engine compartment is expected to become increasingly severe in the years ahead owing to the installation of a large-size manifold catalyst to reduce exhaust emissions, among other factors. This will make it even more important to analyze the engine compartment layout in terms of heat flow considerations at the design conceptualization stage of a new vehicle. In this research, a flow analysis program called DRAG4D was applied to find the flow velocity distribution and ambient air temperature distribution in the engine compartment during driving, idling and after the engine was turned off. This original program developed at Nissan takes into account the effects of the energy balance and buoyancy, and provides a practical level of prediction accuracy. The time required to create an analytical model and perform the computations has been shortened by using an automatic grid generation function, based on a solid model, and experimental equations.
Technical Paper

A Study of the Power Transfer Systems for HEVs

2006-04-03
2006-01-0668
A key factor influencing the performance of a hybrid electric vehicle (HEV) is how the engine and motor-generator (MG) are combined with the vehicle. There have been several types of combinations such as power transfer by using the mechanical transmission of conventional vehicles or the electrical transmission originally designed for HEVs. The objectives of this research were to clarify fuel economy characteristics according to the type of power transfer system used and to identify the requirements for MG system development by analyzing MG operation conditions in each power transfer mode. HEV systems for passenger car use were modeled on the basis of a functional classification. Simulations were conducted using the characteristics of the power transfer systems as parameters to evaluate fuel economy tendencies under several driving modes. The mechanism of the fuel economy tendencies was then analyzed to evaluate quantitatively the effect of each power transfer system on fuel economy.
Technical Paper

A Study on Engine Bearing Wear and Fatigue Using EHL Analysis and Experimental Analysis

1999-05-03
1999-01-1514
The possibility of predicting engine bearing durability by elastohydrodynamic lubrication (EHL) calculations was investigated with the aim of being able to improve durability efficiently without conducting numerous confirmation tests. This study focused on the connecting rod big-end bearing of an automotive engine. The mechanisms of wear and fatigue, which determine bearing durability, were estimated by comparing the results of EHL analysis and experimental data. This comparison showed the possibility of predicting the wear amount and the occurrence of fatigue by calculation.
Technical Paper

A Study on Vehicle Elastomer Mount Preloading and Impact Response with Test Validation

2005-04-11
2005-01-1415
A variety of elastomer mounts are being used for vehicles as isolators/dampers between body and frame, on the engine cradle, etc. These vehicle flexible mounts, made of mainly rubber materials and housed in a metallic tube, are indispensable components affecting the quality of the vehicle ride, noise and vibration. In the auto industry, the usual practice when designing vehicle flexible mounts is to minimally reflect impact considerations in the mount design features. However, in most high-speed vehicle crash events where the mounts fail, the crash responses, including occupant injury severity, are known to be very different from the responses of non-failure cases. Even in low-speed vehicle impact cases, excessive deformation of the flexible mounts could cause significant variance in the compliance of the vehicle acceleration level to the air-bag firing and timing threshold requirements.
Technical Paper

A Study on the Cyclic Plastic Zone Size Method, ω*, for Digital Fatigue Life Prediction of Arc-Welded Joints

2003-10-27
2003-01-2835
Various prediction methods have been proposed for evaluating the fatigue life of welded joints by combining finite element analysis (FEA) with an experimental database. However, to obtain more universal and accurate fatigue life predictions, it is necessary to have criteria for making integrated evaluations of the fatigue strength of welded joints. This paper presents a study that focuses on the local cyclic plastic zone size (ω*) as the criterion of fatigue strength and investigates its validity. The definition of ω* was given by the relationship between the stress state at the notch tip and the elastic strain which was defined along the strain-life fatigue curve (ε - N diagram) of a base metal. As a result of using ω*, it was found that an integrated fatigue life prediction was possible to a certain extent for notch and arc-welded joint specimens.
Technical Paper

A Study on the Torque Capacity of a Metal Pushing V-Belt for CVTs

1998-02-23
980822
The mechanism causing the micro slip characteristic of a metal CVT belt during torque transmission was analyzed, focusing on the gap distribution between the elements. It was hypothesized that gaps between the elements cause slip to occur between the elements and the pulleys when the belt is squeezed between the two halves of the pulleys, and the slip ratio was calculated theoretically on that assumption. The μ-v (friction coefficient versus sliding velocity) characteristic between the elements and the pulleys was measured and the results were used in calculating the slip ratio. As a result, a simulation procedure was developed for predicting the slip-limit torque of the belt on the basis of calculations. The slip ratio found by simulation and the calculated slip-limit torque showed good quantitative agreement with the experimental data, thereby confirming the validity of the simulation procedure.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
X