Refine Your Search

Topic

Author

Search Results

Technical Paper

2D Residual Gas Visualization in an Optical Direct Injection Spark Ignition Engine with IR Laser Absorption

2015-04-14
2015-01-1648
The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
Journal Article

A Fast Modeling Approach for the Numerical Prediction of Urea Deposit Formation

2020-04-14
2020-01-0358
The permanently tightening emission regulations for NOx pollutants force further development of automotive exhaust aftertreatment systems with selective catalytic reduction (SCR). Of particular interest is the long-term reliability of SCR systems with regard to unfavorable operating conditions, such as high injection rates of urea water solution (UWS) or a low exhaust gas temperature. Both of them may lead to formation of solid deposits which increase backpressure and impair ammonia uniformity. A fast modeling approach for numerical prediction of deposit formation in urea SCR systems is desired for optimization of system design. This paper presents a modified methodology for the modeling of deposit formation risk. A new determination of the initial footprint of the spray, where the deposit formation is inhibited, is proposed. The threshold values for the evaluation of the film transport were validated based on experimental results.
Technical Paper

A Novel CFD Approach for an Improved Prediction of Particulate Emissions in GDI Engines by Considering the Spray-Cooling on the Piston

2015-04-14
2015-01-0385
The emission of particulate matter from future GDI engines has to be optimized, to comply with more stringent emission standards such as EU6. Therefore, the mechanisms responsible for the formation of particles have to be analyzed in detail. The understanding of the in-cylinder processes, necessary for this purpose, can only be achieved by a complementary use of optically accessible single-cylinder engines as well as the numerical simulation. This however leads to great demands on the 3D flow simulation. In this paper the complete CFD approach, incorporating a detailed description of the entire underlying model chain is shown. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction and thus also the particulate emissions. Nevertheless, in conventional CFD models, the spray cooling cannot be captured because of an assumed constant wall temperature.
Technical Paper

A Rapid Catalyst Heating System for Gasoline-Fueled Engines

2024-04-09
2024-01-2378
Increasingly stringent tailpipe emissions regulations have prompted renewed interest in catalyst heating technology – where an integrated device supplies supplemental heat to accelerate catalyst ‘light-off’. Bosch and Boysen, following a collaborative multi-year effort, have developed a Rapid Catalyst Heating System (RCH) for gasoline-fueled applications. The RCH system provides upwards of 25 kW of thermal power, greatly enhancing catalyst performance and robustness. Additional benefits include reduction of precious metal loading (versus a ‘PGM-only’ approach) and avoidance of near-engine catalyst placement (limiting the need for enrichment strategies). The following paper provides a technical overview of the Bosch/Boysen (BOB) Rapid Catalyst Heating system – including a detailed review of the system’s architecture, key performance characteristics, and the associated impact on vehicle-level emissions.
Technical Paper

A Thermodynamic Study on Boosted HCCI: Experimental Results

2011-04-12
2011-01-0905
Stricter emissions legislation and growing demands for lower fuel consumption require significant efforts to improve combustion efficiency while satisfying the emission quality demands. Controlled Homogeneous Charge Compression Ignition (HCCI) combined with boosted air systems on gasoline engines provides a particularly promising, yet challenging, approach. Naturally aspirated (NA) HCCI has already shown considerable potential in combustion efficiency gains. Nevertheless, since the volumetric efficiency is limited in the NA HCCI operation range due to the hot residuals required to ignite the mixture and slow down reaction kinetics, only part-load operation is feasible in this combustion mode. Considering the future gasoline engine market with growing potentials identified in downsized gasoline engines, it becomes necessary to investigate the synergies and challenges of controlled, boosted HCCI.
Technical Paper

Analysis of the Combustion Mode Switch Between SI and Gasoline HCCI

2012-04-16
2012-01-1105
The worldwide stricter emission legislation and growing demands for lower fuel consumption require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Homogeneous Charge Compression Ignition (HCCI) on gasoline engines provides a particularly promising and, at the same time, challenging approach, especially regarding the combustion mode switch between spark-ignited (SI) and gasoline HCCI mode and vice-versa. Naturally aspirated (n.a.) HCCI shows considerable potential, but the operation range is air breathing limited due to hot residuals required for auto-ignition and to slow down reaction kinetics. Therefore it is limited to part-load operation. Considering the future gasoline engine market with growing potentials identified on downsized gasoline engines, it is imperative to investigate the synergies and challenges of boosted HCCI.
Technical Paper

Analysis of the In-Cylinder Flow Field / Spray Injection Interaction within a DISI IC Engine Using High-Speed PIV

2011-04-12
2011-01-1288
This study presents measurements of transient flow field and spray structures inside an optically accessible DISI (direct-injection spark-ignition) internal combustion engine. The flow field has a direct effect upon mixture and combustion processes. Given the need to increase the efficiency and performance of modern IC engines and thus reduce emissions a detailed understanding of the flow field is necessary. The method of choice was high-speed two-component particle image velocimetry (PIV) imaging a large field of view (43 x 44 mm₂). To capture the temporal evolution of the main flow features the repetition rate was set to 6 kHz which resolves one image per 1° crank angle (CA) at 1000 rpm. The crank angle range recorded was the latter half of the compression stroke at various engine speeds as well as various charge motions (neutral, tumble and swirl). Moreover, consecutive cycles were recorded allowing a detailed investigation of cycle-to-cycle variations.
Technical Paper

Anti-Lock Braking System for Commercial Vehicles

1988-10-01
881821
Commercial vehicles must convey people and goods safely and reliable, irrespective of the weather and road conditions. The ABS safety braking systems are an essential prerequisite for fulfillment of this primary task. ABS has been used in European commercial vehicles since 1981. Today there are already fittet as standard in buses to some extend. The contribution to increasing road safety is causing the European lawmakers to make ABS statutory for commercial vehicles and to make it part of their compulsory equipment. Suitable anti-lock braking systems and closed loop configurations for commercial vehicles are demonstrated by theoretical observations and technical driving trials, their axlespecific and closed-loop control characteristics are highlighted.
Technical Paper

Antilock Braking Systems (ABS) for Commercial Vehicles - Status 1990 and Future Prospects

1990-10-01
901177
The paper begins with an overview of the history of ABS for commercial vehicles followed by a brief description of the technology of the BOSCH ABS at the time it went into mass production in 1981. Subsequently it describes the field experiences with ABS including the experiences of drivers and operators. These experiences are reflected in the equipment which BOSCH offers today. Additional functions such as ASR (traction control) have been integrated. The paper provides an overview of the functions available today and their implementation. The paper concludes with a discussion on potential continued developments and an attempt to describe the systems which will be required by the mid 9os.
Technical Paper

Bosch System Solutions for Reduction of CO2 and Emissions

2008-01-09
2008-28-0005
For about 20 years now, legislation for emission standards has become more and more strict. Main current standards are LEVII legislation for US- and EU4 for the European Market. Many emerging markets like e.g. China, India, Russia adopt EU regulations (directly or modified. Mid of 90's discussions began on restrictions and legislation for CO2 emissions. The European commission recently proposed concrete legislation standards for 2012 and 2020. These will have strong influence on the strategies of the Car Manufacturers. Single measures like start stop will be of general interest. But for reaching the fleet average combinations of measures in a single engine configuration will be necessary. Bosch system solutions for engine- and power-train management are available for the whole span of world car segments, ranging from value concepts optimized for emerging markets up to high feature solutions for most stringent requirements world wide.
Technical Paper

Brake by Wire for Commercial Vehicles

1992-11-01
922489
This address presents the ongoing development of the commercial-vehicle braking system, over and beyond ABS/ASR, towards a brake by wire system (electronically controlled braking system ELB) with pressure-regulating circuit and additional functions. Following the discussion and selection of various concepts, we will present different versions with individual and combined components for the towing vehicle and for the trailer. The safety concept of a pneumatic back-up circuit will be dealt with, as well as the communication through data bus (CAN) both within the braking system itself and with other vehicle systems. The improvement possibilities inherent in ELB will be detailed, with the emphasis on increasing road and traffic safety, on reducing operating costs, and on future vehicle-guidance functions.
Technical Paper

Challenge Determining a Combustion System Concept for Downsized SI-engines - Comparison and Evaluation of Several Options for a Boosted 2-cylinder SI-engine

2013-04-08
2013-01-1730
To meet future CO₂ emissions limits and satisfy the bounds set by exhaust gas legislation reducing the engine displacement while maintaining the power output ("Downsizing") becomes of more and more importance in the SI engine development process. The total number of cylinders per engine has to be reduced to keep the thermodynamic disadvantages of a small combustion chamber layout as small as possible. Doing so new challenges arise concerning the mechanical design, the design of the combustion system concept as well as strategies maintaining a satisfying transient torque behavior. To address these challenges a turbocharged 2-cylinder SI engine was designed for research purposes by Weber Motor GmbH and Robert Bosch GmbH. The design process was described in detail in last year's paper SAE 2012-01-0832. Since the engine design is very modular it allows for several different engine layouts which can be examined and evaluated.
Technical Paper

Comparison of Different Fuel Operations of a Multi-Fuel Single-Disk Rotary Engine through Thermodynamic Analysis

2022-04-28
2022-01-5032
Today unmanned aerial vehicle applications are powered by Wankel rotary engines due to their high power-to-weight ratio and smooth operation. Most of modern propulsion units for unmanned aerial vehicles are designed to run on high volatile fuels such as aviation gasoline (AvGas). However, the refueling infrastructure in aviation is geared toward the most used aviation fuel, kerosene. This and other reasons, such as significantly lower price and easier fire protection regulations, lead to the desire to be able to operate these propulsion units with kerosene. Opposed to reciprocating engines, the low compression ratio of rotary engines prevents the implementation of compression ignition combustion processes. Therefore, the purpose of this paper is to discuss the operation of a spark-ignited rotary engine on different fuels. In detail, different qualities of kerosene as well as gasoline/kerosene blends are compared together.
Technical Paper

Control Strategy for NOx - Emission Reduction with SCR

2003-11-10
2003-01-3362
Future emission standards for heavy-duty vehicles like Euro 4, Euro 5, US '07 require advanced engine functionality. One contribution to achieve this target is the catalytic reduction of nitrogen oxides by injection of urea water solution to the exhaust gas. An overview on a urea dosing system, also called DENOXTRONIC, is given and a dosing strategy is described.
Technical Paper

Crank Angle Resolved Determination of Fuel Concentration and Air/Fuel Ratio in a SI-Internal Combustion Engine Using a Modified Optical Spark Plug

2007-04-16
2007-01-0644
A fiber optical sensor system was used to detect the local fuel concentration in the vicinity of the spark position in a cylinder of a four-stroke SI production engine. The fuel concentration was determined by the infrared absorption method, which allows crank angle resolved fuel concentration measurements during multiple successive engine cycles. The sensor detects the attenuation of infrared radiation in the 3.4 μm wavelength region due to the infrared vibrational-rotational absorption band of hydrocarbons (HC). The absorption path was integrated in a modified spark plug and a tungsten halide lamp was used as an infrared light source. All investigations were carried out on a four-stroke spark ignition engine with fuel injection into the intake manifold. The measurements were made under starting conditions of the engine, which means a low engine speed. The engine operated with common gasoline (Euro Super) at different air/fuel-ratios.
Journal Article

Data Based Damage Prediction of Commercial Vehicles Using Bayesian Networks

2008-10-07
2008-01-2659
For the estimation of life expectancy and dynamic fatigue of a machine, the overall load configuration of the typical application is of major importance. Regarding commercial vehicles, the load spectrum differs with the variation of machine parameters which requires costly measurements for analysis of damage. This article presents robust methods for the computation of characteristic values for the damage to a certain component. The methods are based on a hypermodel, which represents the relation between different machine configurations and the resulting characteristic values. Therefore, fewer typical machine configurations have to be measured. The statistical models of load and damage are made using the Rainflow counting algorithm and an extended version of Miner's Law. After the condensation into characteristic damage values, hypermodels for the relationship between these scalar values and the machine parameters are developed using Neural Networks.
Technical Paper

Design of a Boosted 2-Cylinder SI-Engine with Gasoline Direct Injection to Define the Needs of Future Powertrains

2012-04-16
2012-01-0832
To meet future CO₂ emissions limits and satisfy the bounds set by exhaust gas legislation reducing the engine displacement while maintaining the power output ("Downsizing") becomes of more and more importance to the SI-engine development process. The total number of cylinders per engine has to be reduced to keep the thermodynamic disadvantages of a small combustion chamber layout as small as possible. Doing so leads to new challenges concerning the mechanical design, the design of the combustion system concept as well as strategies maintaining a satisfying transient torque behavior. To address these challenges a turbocharged 2-cylinder SI engine with gasoline direct injection was designed for research purposes by Weber Motor and Bosch. This paper wants to offer an insight in the design process. The mechanical design as well as the combustion system concept process will be discussed.
Technical Paper

Desktop Simulation and Calibration of Diesel Engine ECU Software using Software-in-the-Loop Methodology

2014-04-01
2014-01-0189
Current exhaust gas emission regulations can only be well adhered to through optimal interplay of combustion engine and exhaust gas after-treatment systems. Combining a modern diesel engine with several exhaust gas after-treatment components (DPF, catalytic converters) leads to extremely complex drive systems, with very complex and technically demanding control systems. Current engine ECUs (Electronic Control Unit) have hundreds of functions with thousands of parameters that can be adapted to keep the exhaust gas emissions within the given limits. Each of these functions has to be calibrated and tested in accordance with the rest of the ECU software. To date this task has been performed mostly on engine test benches or in Hardware-in-the-Loop (HiL) setups. In this paper, a Software-in-the-Loop (SiL) approach, consisting of an engine model and an exhaust gas treatment (EGT) model, coupled with software from a real diesel engine ECU, will be described in detail.
Technical Paper

Electroformed Multilayer Orifice Plate for Improved Fuel Injection Characteristics

1997-02-24
971070
A new orifice plate (OP) for advanced fuel injection characteristics is presented. The OP is designed to optimize the air-fuel mixture generation and transportation within individually shaped manifold geometries of spark-ignition engines. To generate the suitable spray characteristics, the basic OP design and its flow characteristics have some features originating from the well known turbulence nozzle principle: Turbulence generating flow deflections within the OP are achieved by superimposing layers containing flow cavities, which are displaced from one another. The flow deflections effect atomization and define the spatial spray beam orientation. A great variety and a high volume of precisely structured, low cost OPs can be produced daily by micromachining the layers in electroformed nickel. The flow cavities and outer dimensions of each layer are shaped by photo-resist structures.
Technical Paper

Electronic Control Units of Bosch EDC Systems

1988-02-01
880185
Todays injection systems for diesel engines work with highly sophisticated mechanical governors. But only by electronic control of diesel injection systems will it be possible to comply with the emission regulations and to achieve better performance. In 1986 BOSCH started volume production of Electronic Diesel Control (EDC). This paper will concentrate on the electronic control unit (ECU) as it was designed for use in passenger cars. The production ECU and the planned next-step ECU are outlined, explaining hardware and software. An outlook of development goals of the future EDC control-units is given.
X