Refine Your Search

Topic

Author

Search Results

Technical Paper

A Bayesian Approach for Aggregating Test Data Across Sub-Populations

2005-04-11
2005-01-1775
In the process of conducting a reliability analysis of a system, quite often the population of interest is not homogenous; consisting of sub-populations which arise as production operations are adjusted, component suppliers are changed, etc. While these sub-populations are each unique in many ways, they also have much in common. It is also common for data to be available from a variety of different test regimes, e.g. environmental testing and fleet maintenance observations. Hierarchical Bayesian methods provide an organized, objective means of estimating the reliability of the individual systems, the sub-population reliability as well as the reliability of the entire population. This paper provides an introduction to a Bayesian approach that can be extended for more complicated situations.
Journal Article

A Comparison of Methods for Representing and Aggregating Uncertainties Involving Sparsely Sampled Random Variables - More Results

2013-04-08
2013-01-0946
This paper discusses the treatment of uncertainties corresponding to relatively few samples of random-variable quantities. The importance of this topic extends beyond experimental data uncertainty to situations involving uncertainty in model calibration, validation, and prediction. With very sparse samples it is not practical to have a goal of accurately estimating the underlying variability distribution (probability density function, PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a desired percentage of the actual PDF, say 95% included probability, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the random-variable range corresponding to the desired percentage of the actual PDF. The presence of the two opposing objectives makes the sparse-data uncertainty representation problem an interesting and difficult one.
Technical Paper

Aerodynamic Drag of Heavy Vehicles (Class 7-8): Simulation and Benchmarking

2000-06-19
2000-01-2209
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. Experimental validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California (USC). Companion computer simulations are being performed by Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL), and California Institute of Technology (Caltech) using state-of-the-art techniques.
Technical Paper

An Examination of Sensing Skins with Tailored Conductivity Distributions for Enhanced 2-D Surface Temperature Measurements Using Electrical Impedance Tomography (EIT)

2023-10-31
2023-01-1680
For 2D surface temperature monitoring applications, a variant of Electrical Impedance Tomography (EIT) was evaluated computationally in this study. Literature examples of poor sensor performance in the center of the 2D domains away from the side electrodes motivated these efforts which seek to overcome some of the previously noted shortcomings. In particular, the use of ‘sensing skins’ with novel tailored baseline conductivities was examined using the EIDORS package for EIT. It was found that the best approach for detecting a temperature hot spot depends on several factors such as the current injection (stimulation) patterns, the measurement patterns, and the reconstruction algorithms. For well-performing combinations of these factors, customized baseline conductivities were assessed and compared to the baseline uniform conductivity.
Journal Article

An Optical Study of Mixture Preparation in a Hydrogen-fueled Engine with Direct Injection Using Different Nozzle Designs

2009-11-02
2009-01-2682
Mixture formation in an optically accessible hydrogen-fueled engine was investigated using Planar Laser-Induced Fluorescence (PLIF) of acetone as a fuel tracer. The engine was motored and fueled by direct high-pressure injection. This paper presents the evolution of the spatial distribution of the ensemble-mean equivalence ratio for six different combinations of nozzle design and injector geometry, each for three different injection timings after intake-valve closure. Asymmetric single-hole and 5-hole nozzles as well as symmetric 6-hole and 13-hole nozzles were used. For early injection, the low in-cylinder pressure and density allow the jet to preserve its momentum long enough to undergo extensive jet-wall and (for multi-hole nozzles) jet-jet interaction, but the final mixture is fairly homogeneous. Intermediately timed injection yields inhomogeneous mixtures with surprisingly similar features observed for all multi-hole injectors.
Technical Paper

Analysis and Testing of Optimal Power Control Strategy for NASA Moon Base Interconnected DC Microgrid System

2023-09-05
2023-01-1508
As a part of NASA’s efforts in space, options are being examined for an Artemis moon base project to be deployed. This project requires a system of interconnected, but separate, DC microgrids for habitation, mining, and fuel processing. This in-place use of power resources is called in-situ resource utilization (ISRU). These microgrids are to be separated by 9-12 km and each contains a photovoltaic (PV) source, energy storage systems (ESS), and a variety of loads, separated by level of criticality in operation. The separate microgrids need to be able to transfer power between themselves in cases where there are generation shortfall, faults, or other failures in order to keep more critical loads running and ensure safety of personnel and the success of mission goals. In this work, a 2 grid microgrid system is analyzed involving a habitation unit and a mining unit separated by a tie line.
Journal Article

Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities

2010-10-25
2010-01-2106
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP.
Journal Article

Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography

2014-04-01
2014-01-1412
A full understanding and characterization of the near-field of diesel sprays is daunting because the dense spray region inhibits most diagnostics. While x-ray diagnostics permit quantification of fuel mass along a line of sight, most laboratories necessarily use simple lighting to characterize the spray spreading angle, using it as an input for CFD modeling, for example. Questions arise as to what is meant by the “boundary” of the spray since liquid fuel concentration is not easily quantified in optical imaging. In this study we seek to establish a relationship between spray boundary obtained via optical diffused backlighting and the fuel concentration derived from tomographic reconstruction of x-ray radiography. Measurements are repeated in different facilities at the same specified operating conditions on the “Spray A” fuel injector of the Engine Combustion Network, which has a nozzle diameter of 90 μm.
Technical Paper

DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations

2005-11-01
2005-01-3511
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
Technical Paper

Detection Reliability Study for Interlayer Cracks

1998-11-09
983125
The Federal Aviation Administration Airworthiness Assurance Nondestructive Inspection Validation Center (FAA-AANC) is currently conducting a detection reliability study pertaining to the detection of cracks in multi-layered aluminum sheets. This paper describes the design, production and characterization of test specimens that are currently being used to conduct third layer Probability of Detection (PoD) experiments. Pertinent aspects of the lap splice joints for Boeing 737 aircraft, Line Numbers 292 - 2565 are included in the test specimens. A preliminary analysis of the data indicates that for some inspectors, traditional measures of performance - in particular PoD curves based on maximum likelihood fit to two-parameter lognormal curve - may be misleading.
Technical Paper

Effect of Operating Conditions and Fuel Type on Crevice HC Emissions: Model Results and Comparison with Experiments

1999-10-25
1999-01-3578
A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model.
Technical Paper

Effect of Spray Collapse on Mixture Preparation and Combustion Characteristics of a Spark-Ignition Heavy-Duty Diesel Optical Engine Fueled with Direct-Injected Liquefied Petroleum Gas (LPG)

2023-04-11
2023-01-0323
Liquefied Petroleum Gas (LPG), as a common alternative fuel for internal combustion engines is currently widespread in use for fleet vehicles. However, a current majority of the LPG-fueled engines, uses port-fuel injection that offers lower power density when compared to a gasoline engine of equivalent displacement volume. This is due to the lower molecular weight and higher volatility of LPG components that displaces more air in the intake charge due to the larger volume occupied by the gaseous fuel. LPG direct-injection during the closed-valve portion of the cycle can avoid displacement of intake air and can thereby help achieve comparable gasoline-engine power densities. However, under certain engine operating conditions, direct-injection sprays can collapse and lead to sub-optimal fuel-air mixing, wall-wetting, incomplete combustion, and increased pollutant emissions.
Journal Article

Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes

2014-04-01
2014-01-1429
This paper first summarizes a new theoretical description that quantifies the effects of real-fluid thermodynamics on liquid fuel injection processes as a function of pressure at typical engine operating conditions. It then focuses on the implications this has on modeling such flows with emphasis on application of the Large Eddy Simulation (LES) technique. The theory explains and quantifies the major differences that occur in the jet dynamics compared to that described by classical spray theory in a manner consistent with experimental observations. In particular, the classical view of spray atomization as an appropriate model at some engine operating conditions is questionable. Instead, non-ideal real-fluid behavior must be taken into account using a multicomponent formulation that applies to hydrocarbon mixtures at high-pressure supercritical conditions.
Journal Article

Equivalence Ratio Distributions in a Light-Duty Diesel Engine Operating under Partially Premixed Conditions

2012-04-16
2012-01-0692
The performance of Partially Premixed Compression Ignition (PPCI) combustion relies heavily on the proper mixing between the injected fuel and the in-cylinder gas mixture. In fact, the mixture distribution has direct control over the engine-out emissions as well as the rate of heat release during combustion. The current study focuses on investigating the pre-combustion equivalence ratio distribution in a light-duty diesel engine operating at a low-load (3 bar IMEP), highly dilute (10% O₂), slightly boosted (P ⁿ = 1.5 bar) PPCI condition. A tracer-based planar laser-induced fluorescence (PLIF) technique was used to acquire two-dimensional equivalence ratio measurements in an optically accessible diesel engine that has a production-like combustion chamber geometry including a re-entrant piston bowl.
Technical Paper

Examination of Iso-octane/Ketone Mixtures for Quantitative LIF Measurements in a DISI Engine

2002-03-04
2002-01-0837
Mixtures of low concentrations of 3-pentanone in iso-octane are used widely in an attempt to obtain quantitative measurements of fuel equivalence ratio in direct-injection, spark-ignition engines. Despite similar boiling temperatures and heats of vaporization, 3-pentanone has been found to evaporate from the mixture more rapidly than the iso-octane. Thus, the signal detected by the planar laser-induced fluorescence (PLIF) diagnostic cannot accurately represent fuel distribution during spray evaporation and air-fuel mixing in an engine. Using an evaporation chamber, we demonstrate the non-steady PLIF signal of the iso-octane/3-pentanone mixture during steady evaporation. Significant improvement in the consistency of the PLIF signal during evaporation is achieved by adding a heavier ketone (3-hexanone) tracer to compensate for the early depletion of the 3-pentanone.
Technical Paper

Experimental Evaluation of a Prototype Free Piston Engine - Linear Alternator (FPLA) System

2016-04-05
2016-01-0677
This paper describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design was developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two-stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators which also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to charge the batteries. The engine-alternator system was designed, assembled and operated over a 2-year period at Sandia National Laboratories in Livermore, CA.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Formaldehyde Visualization Near Lift-off Location in a Diesel Jet

2006-10-16
2006-01-3434
Formaldehyde (HCHO) near the lift-off location in a reacting diesel jet was visualized using planar laser-induced fluorescence (PLIF). Simultaneous imaging of OH chemiluminescence identified the high-temperature combustion region (lift-off). Experiments were performed in a constant-volume combustion vessel at ambient gas conditions (temperature and oxygen concentration) that generate no-soot, low-soot and moderate-soot diesel jets during mixing-controlled combustion. For no-soot conditions, results show that HCHO is formed upstream of the lift-off location and is consumed downstream of the lift-off length in fuel-rich premixed reaction zones at the jet center. Despite the fuel-rich combustion, and downstream regions that are surrounded by a high-temperature diffusion flame, there is no detectable PAH formation in the no-soot condition.
Journal Article

History v. Simulation: An Analysis of the Drivers of Alternative Energy Vehicle Sales

2016-07-18
2016-01-9142
Simulations of the US light duty vehicle stock help policy makers, investors, and auto manufacturers make informed decisions to influence the future of the stock and its associated green house gas emissions. Such simulations require an underlying framework that captures the key elements of consumer purchasing decisions, which can be uncertain. This uncertainty in a simulation’s logic is usually convolved with uncertainty in the underlying assumptions about the futures of energy prices and technology innovation and availability. By comparing simulated alternative energy vehicle (AEV) sales to historical sales data, one can assess the simulation’s ability to capture the dynamics of consumer choice, independent of many of those underlying uncertainties, thereby determining the factors that most strongly impact sales.
Technical Paper

Homogeneous Charge Compression Ignition with a Free Piston: A New Approach to Ideal Otto Cycle Performance

1998-10-19
982484
Sandia National Laboratories has been investigating a new, integrated approach to generating electricity with ultra low emissions and very high efficiency for low power (30 kW) applications such as hybrid vehicles and portable generators. Our approach utilizes a free piston in a double-ended cylinder. Combustion occurs alternately at each cylinder end, with intake/exhaust processes accomplished through a two stroke cycle. A linear alternator is mounted in the center section of the cylinder, serving to both generate useful electrical power and to control the compression ratio by varying the rate of electrical generation. Thus, a mechanically simple geometry results in an electronically controlled variable compression ratio configuration. The capability of the homogeneous charge compression ignition combustion process employed in this engine with regards to reduced emissions and improved thermal efficiency has been investigated using a rapid compression expansion machine.
X