Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Hardware-Assisted Inlet Port Development Process for Diesel Engines Using Doppler Global Velocimetry

2005-04-11
2005-01-0640
As more virtual product development is integrated into the mass-production development process and overall development times are shortened, efficient intake-port design requires closer cooperation between design, simulation and test engineers. Doppler Global Velocimetry (DGV) has become an important link in the overall intake-port development process as it provides 3D-vector fields of flow velocity. Hence, it can be used to make direct comparisons with 3D-CFD-simulation results. The present paper describes the hardware-assisted inlet port development process for diesel engines, the cooperation among port design, 3D-CFD-simulation with the creation of alternative geometries and DGV flow-measurement of preferred variants with their capability of checking and improving simulation results.
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

Acoustic Characteristics of Coupled Dissipative and Reactive Silencers

2003-05-05
2003-01-1643
The acoustic characteristics of a hybrid silencer consisting of two dissipative chambers and a Helmholtz resonator are investigated first computationally and experimentally. Complex wave number and characteristic impedance are used for the dissipative chambers to account for the wave propagation through absorbing material. Three-dimensional boundary element method (BEM) is employed to predict the transmission loss in the absence of mean flow and the predictions are compared with the experimental results obtained from an impedance tube setup. Noting that the long connecting tube between acoustic elements may reduce the transmission loss near the resonance frequency, two alternative hybrid silencers with short connecting tubes are also investigated by BEM. The present study shows the effectiveness of hybrid silencers over a wide frequency range and demonstrates the importance of understanding each acoustic element, as well as their interaction in designing silencers.
Technical Paper

An Integrated Software Environment for UAV Missions Support

2013-09-17
2013-01-2189
This paper describes the design and development of a virtual environment conceived to support flight operations of an Unmanned Air Vehicle (UAV) used for wind mapping in the proximity of existing or planned wind farms. The virtual environment can be used in pre-flight briefings aiming to define a trajectory from a list of waypoints, to change and eventually re-plan the mission in case of intersection with no fly zones, to simulate the mission, and to preview images/videos taken from the UAV on-board cameras. During flight, the tool can be used to compute the wind speed along the trajectory by analyzing the data streaming from the UAV. The integration of Augmented Reality (AR) techniques in the flight environment provides assistance in remotely piloted landings, and allows visualizing flight and environmental information that are critical to the mission.
Technical Paper

Analysis and Development of A Real-Time Control Methodology in Resistance Spot Welding

1991-02-01
910191
The single-parameter, in-process monitor and automatic control systems for the resistance spot welding process have been studied by many investigators. Some of these have already been commercialized and used by sheet metal fabricators. These control systems operate primarily on one of the three process parameters: maximum voltage or voltage drop, dynamic resistance, or thermal expansion between electrodes during nugget formation. Control systems based on voltage or dynamic resistance have been successfully implemented for industrial applications. A great amount of experience on these two control methods has been accumulated through trial-and-error approaches. The expansion-based control system is not commonly utilized due to lack of experience and understanding of the process. Since the expansion displacement between electrodes during welding responds directly to the weld nugget formation, this control parameter provides a better means to produce more precise spot welds.
Technical Paper

Analysis of Human Driver Behavior in Highway Cut-in Scenarios

2017-03-28
2017-01-1402
The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
Technical Paper

Applications of Computer Simulations for Part and Process Design for Automotive Stampings

1997-02-24
970985
Recent studies in sheet metal forming, conducted at universities world wide, emphasize the development of computer aided techniques for process simulation. To be practical and acceptable in a production environment, these codes must be easy to use and allow relatively quick solutions. Often, it is not necessary to make exact predictions but rather to establish the influence of process variables upon part quality, tool stresses, material flow, and material thickness variation. In cooperation with its industrial partners, the ERC for Net Shape Manufacturing of the Ohio State University has applied a number of computer codes for analysis and design of sheet metal forming operations. This paper gives a few selected examples taken from automotive applications and illustrates practical uses of computer simulations to improve productivity and reduce tool development and manufacturing costs.
Technical Paper

Automated Steering Controller for Vehicle Testing

2007-08-05
2007-01-3647
Automating road vehicle control can increase the range and reliability of dynamic testing. Some tests, for instance, specify precise steering inputs which human test drivers are only able to approximate, adding uncertainty to the test results. An automated steering system has been developed which is capable of removing these limitations. This system enables any production car or light truck to follow a user-defined path, using global position feedback, or to perform specific steering sequences with excellent repeatability. The system adapts itself to a given vehicle s handling characteristics, and it can be installed and uninstalled quickly without damage or permanent modification to the vehicle.
Technical Paper

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading

2016-11-07
2016-22-0004
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
Technical Paper

Biosensing on the CD Microfluidic Platform with Genetically Engineered Proteins

2000-07-10
2000-01-2513
The current Si/polymeric medical diagnostic sensors that are on the market only feature a one-point calibration system [1]. Such a measurement results in less accurate sensing and more in-factory sensor rejection. The two-point calibration fluidic method introduced here will alleviate some of the shortcomings of such current miniature analytical systems. Our fluidic platform is a disposable, multi-purpose micro analytical laboratory on a compact disc (CD) [2, 3]. This system is based on the centrifugal force, in which fluidic flow can be controlled by the spinning rate of the CD and thus a whole range of fluidic functions including valving, mixing, metering, splitting, and separation can be implemented. Furthermore, optical detection such as absorption and fluorescence can be incorporated into the CD control unit to obtain signals from pre-specified positions on the disc.
Journal Article

Braking Behavior of Truck Drivers in Crash Imminent Scenarios

2014-09-30
2014-01-2380
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results.
Technical Paper

Characterization of Vehicle Occupant Compartment Material Properties Using MADYMO: Methodology and Validation

2009-06-09
2009-01-2260
During a motor-vehicle collision, an occupant may interact with a variety of interior structures. The material properties and construction of these structures can directly affect the occupant's kinetic response. Simulation tools such as MADYMO (Mathematical Dynamical Models) can be used to estimate the forces imparted to an occupant for injury mechanism and causation evaluation relative to a particular event. Depending on the impact event and the specific injury mechanism being evaluated, the selection of proper material characteristics can be quite important. A comprehensive literature review of MADYMO studies illustrates the prevalent use of generic material characteristics and the need for improved property estimation and implementation methods.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Comparison of ATD to PMHS Response in the Under-Body Blast Environment

2015-11-09
2015-22-0017
A blast buck (Accelerative Loading Fixture, or ALF) was developed for studying underbody blast events in a laboratory-like setting. It was designed to provide a high-magnitude, high-rate, vertical loading environment for cadaver and dummy testing. It consists of a platform with a reinforcing cage that supports adjustable-height rigid seats for two crew positions. The platform has a heavy frame with a deformable floor insert. Fourteen tests were conducted using fourteen PMHS (post mortem human surrogates) and the Hybrid III ATD (Anthropomorphic Test Device). Tests were conducted at two charge levels: enhanced and mild. The surrogates were tested with and without PPE (Personal Protective Equipment), and in two different postures: nominal (knee angle of 90°) and obtuse (knee angle of 120°). The ALF reproduces damage in the PMHS commensurate with injuries experienced in theater, with the most common damage being to the pelvis and ankle.
Technical Paper

Consumer Braking Performance Information Initiative

1999-03-01
1999-01-1291
A test procedure that rates brake performance must control variability so that measured differences between vehicles are real. Tests were conducted using standard brake test procedures with three drivers in three cars on wet and dry asphalt with the ABS working and disabled. The differences between vehicles were greater than differences due to ABS condition, surface condition, and drivers. The procedure measured differences between all the vehicles with statistical certainty but used many replications and drivers. If only large differences in performance need to be distinguished, fewer replications and drivers will be needed.
Technical Paper

Deep Reinforcement Learning Based Collision Avoidance of Automated Driving Agent

2024-04-09
2024-01-2556
Automated driving has become a very promising research direction with many successful deployments and the potential to reduce car accidents caused by human error. Automated driving requires automated path planning and tracking with the ability to avoid collisions as its fundamental requirement. Thus, plenty of research has been performed to achieve safe and time efficient path planning and to develop reliable collision avoidance algorithms. This paper uses a data-driven approach to solve the abovementioned fundamental requirement. Consequently, the aim of this paper is to develop Deep Reinforcement Learning (DRL) training pipelines which train end-to-end automated driving agents by utilizing raw sensor data. The raw sensor data is obtained from the Carla autonomous vehicle simulation environment here. The proposed automated driving agent learns how to follow a pre-defined path with reasonable speed automatically.
Journal Article

Design Challenges in the Development of a Large Vehicle Inertial Measurement System

2014-04-01
2014-01-0096
The (Vehicle Inertia Parameter Evaluation Rig) VIPER II is a full vehicle mass and inertia parameter measurement machine. The VIPER II expands upon the capabilities of its predecessor and is capable of measuring vehicles with a mass of up to 45,360 kg (100,000 lb), an increase in capacity of 18,100 kg (40,000 lb). The VIPER II also exceeds its predecessor in both the length and width of vehicles it can measure. The VIPER II's maximum vehicle width is 381 cm (150 in) an increase of 76 cm (30 in) and maximum distance from the vehicle CG to the outer most axle is 648 cm (255 in) an additional 152 cm (60 in) The VIPER II is capable of performing measurements including vehicle CG height, pitch, roll, and yaw moments of inertia and the roll/yaw cross product of inertia. While being able to measure both heavier and larger vehicles, the VIPER II is designed to maintain a maximum error of 3% for all inertia measurements and 1% for CG height.
Journal Article

Design and Operation of a Brake and Throttle Robot

2009-04-20
2009-01-0429
This paper describes the design and implementation of the SEA, Ltd. Brake and Throttle Robot (BTR). Presented are the criteria used in the initial design and the development and testing of the BTR, as well as some test results achieved with the device. The BTR is designed for use in automobiles and light trucks. It is based on a servomotor driven ballscrew, which in turn operates either the brake or accelerator. It is easily portable from one vehicle to another and compact enough to fit even smaller vehicles. The BTR is light enough so as to have minimal effect on the measurement of vehicle parameters. The BTR is designed for use as a stand-alone unit or as part of a larger control system such as the Automated Test Driver (ATD) yet allows for the use of a test driver for safety, as well as test selection, initiation, and monitoring. Installation in a vehicle will be described, as well as electronic components that support the BTR.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Technical Paper

Development and Verification of Suspension Parameters for The Ohio State Buckeye Bullet 2 Land Speed Vehicle

2007-04-16
2007-01-0814
The Buckeye Bullet set domestic as well as international speed records for electric vehicles in 2004. The next generation of land speed vehicle from Ohio State called the Buckeye Bullet 2 (henceforth the BB2) will again challenge and hopefully achieve several new speed records. The Buckeye Bullet suspension worked relatively well but was found to not be quite optimal for the vehicle. The purpose of the work outlined here was to develop a new front and rear suspension for the BB2 that would be an improvement over the suspension of the original Bullet. Previous to the start of this work part of the suspension had already been designed in the form of an upright/control arm setup. This paper works on taking the suspension to completion from this point of design. Work done includes developing the final design, determining suspension parameters, building an ADAMS model, and testing the ADAMS model.
X