Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

A Bi-Level Optimization Approach for Eco-Driving of Heavy-Duty Vehicles

2023-08-28
2023-24-0172
With the increase of heavy-duty transportation, more fuel efficient technologies and services have become of great importance due to their environmental and economical impacts for the fleet managers. In this paper, we first develop a new analytical model of the heavy-truck for its dynamics and its fuel consumption, and valid the model with experimental measurements. Then, we propose a bi-level optimization approach to reduce the fuel consumption, thus the CO2 emissions, while ensuring several safety constraints in real-time. Numerical results show that important reduction of the fuel consumption can be achieved, while satisfying imposed safety constraints.
Technical Paper

A Measuring Technology to Analyze HC Concentration in the Air Intake System while the Engine is in Operation

2004-03-08
2004-01-0142
In order to correspond to the exhaust emissions regulations that become severe every year, more advanced engine control becomes necessary. Engine engineers are concerned about the Hydrocarbons (HCs) that flow through the air-intake ports and that are difficult to precisely control. The main sources of the HCs are, the canister purge, PCV, back-flow gas through the intake valves, and Air / Fuel ratio (A/F) may be aggravated when they flow into the combustion chambers. The influences HCs give on the A/F may also grow even greater, which is due to the increasingly stringent EVAP emission regulations, by more effective ventilation in the crankcase, and also by the growth of the VVT-operated angle and timing, respectively. In order to control the A/F more correctly, it is important to estimate the amount of HCs that are difficult to manage, and seek for suitable controls over fuel injection and so on.
Technical Paper

A Multi-Dimensional Numerical Method for Predicting Warm-Up Characteristic of Automobile Catalytic Converter Systems

1995-10-01
952413
A multi-dimensional numerical method for predicting the warm-up characteristic of automobile catalytic converter systems was developed to effectively design catalytic converter systems which achieve low tail pipe emissions with satisfactory packagebility. The features of the method are; (1) consideration of the governing phenomena such as gas flow, heat transfer, and chemical reactions (2) capability of predicting warm-up characteristic for not only the catalytic converters but also the system as a whole during emission test modes such as the USA LA-4 mode. The description of the method is presented. The experimental verifications of the method were conducted to assure the accuracy of it. The effect of design parameters such as electrically heated catalyst (EHC), high loading of noble metal and thin honeycomb wall on warm-up characteristic of the catalyst are analyzed in the paper.
Technical Paper

A New Proportional Collection System for Extremely Low Emission Measurement in Vehicle Exhaust

1999-05-03
1999-01-1460
A new proportional collection system for extremely low tailpipe emission measurement in transient conditions has been developed. The new system can continuously sample a minute flow of exhaust gas, at a rate that is proportional to the engine exhaust rate. A zero grade gas dilution technique is utilized to prevent the influence of pollutants in atmospheric air that are the same concentration level as those in the exhaust gas. The system has accuracy within ±5%. For the direct exhaust gas flow meter, a pitot tube type flow meter is utilized as it is simple, heat resistant, sufficiently accurate and has low flow-resistance characteristic. For the collection and dilution controllers, two mass flow controllers (MFC) were adopted. The MFCs' output can be adversely influenced by variation of the specific heat of the sample gas, resulting in flow reporting error.
Technical Paper

A Sectional Soot Model for RANS Simulation of Diesel Engines

2014-04-01
2014-01-1590
In this paper, a sectional soot model coupled to a tabulated combustion model is compared with measurements from an experimental engine database. The sectional soot model, based on the work of Vervisch-Klakjic (Ph.D. thesis, Ecole Centrale Paris, Paris, 2011) and Netzell et al. (P. Combust. Inst., 31(1):667-674, 2007), has been implemented into IFPC3D (Bohbot et al., Oil Gas Sci Technol, 64(3):309-335, 2009), a 3D RANS solver. It enables a complex modeling of soot particles evolution, in a 3D Diesel simulation. Five distinct source terms are applied to each soot section at any time and any location of the flow. The inputs of the soot model are provided by a tabulated combustion model derived from the Engine Approximated Diffusion Flame (EADF) one (Michel and Colin, Int. J. Engine Res., 2013) and specifically modified to include the minor species required by the soot model.
Technical Paper

A Semi-Physical NOx Model for Diesel Engine Control

2013-04-08
2013-01-0356
In this paper, a new physics-based model for the prediction of NOx emissions produced by diesel engines is presented. The aim of this work is to provide a reference model for the validation of control strategies and NOx estimators. The model describes the NOx production in the burned gas zone where the burned gas temperature sub-model is adapted to be generic and tunable. The model consists of three main sub-models for the estimation of the burned gas temperature, the concentration of the species in the burned gases and the NOx formation, respectively. A new model for estimating the burned gas temperature, known to have a strong impact on thermal NOx formation rate, is proposed. The model depends on the intake burned gas ratio and the combustion phasing computed from the cylinder pressure. This model has a limited number of calibration parameters identified so that NOx model output matches with experimental data measured in a four-cylinder, four-stroke, direct-injection diesel engine.
Technical Paper

A Solid Particle Number Measurement System Including Nanoparticles Smaller than 23 Nanometers

2014-04-01
2014-01-1604
The particle number (PN) emission regulation has been implemented since 2011 in Europe. PN measurement procedure defined in ECE regulation No. 83 requires detecting only solid particles by eliminating volatile particles, the concentrations of which are highly influenced by dilution conditions, using a volatile particle remover (VPR). To measure PN concentration after the VPR, a particle number counter (PNC) which has detection threshold at a particle size of 23 nm is used, because most solid particles generated by automotive engines are considered to be larger than 23 nm. On the other hand, several studies have reported the existence of solid and volatile particles smaller than 23 nm in engine exhaust. This paper describes investigation into a measurement method for ultrafine PNCs with thresholds of below 23 nm and evaluation of the VPR performance for the particles in this size range. The detection efficiency of an ultrafine PNC was verified by following the ECE regulation procedure.
Technical Paper

A Study of Soot Formation Processes in a Dual Fueled Compression Ignition Engine

1992-10-01
922304
The characteristics of exhausted smoke of a methanol DI diesel engine which is ignited by diesel fuel are investigated to clarify the soot formation process. At this engine, very little smoke is exhausted when diesel fuel is kept below a certain amount, so soot and smoke emitting characteristics are studied under the various diesel fuel amounts. By analyzing microstructure of soot, it is found that the soot emitted from the methanol diesel engine is composed of inner core and outer shell, similar to that of the conventional diesel engines. From more detailed qualitative analysis, the calcium percentage from the lubricating oil in outer shell is much higher than that of the conventional diesel engines. In consideration of soot characteristics, spray structure and combustion characteristics, the soot formation process of the methanol diesel engine was clarified.
Technical Paper

A Technology of Weight Reduction for the Aluminum Cast Wheel

1993-11-01
931885
In the field of automobile disk wheels, demands for aluminum wheels have been increasing for the reason of ride comfort and better appearance. And over 90 percent of luxurious passenger cars are equipped with aluminum wheels. This trend is spurred also by the demand for higher fuel efficiency for the cause of environmental protection, which calls for weight reduction of automobiles. This paper reports our research on manufacturing light-weight, high-quality aluminum cast wheels; covering the entire process from basic design to casting, and placing emphasis on the following three points. 1) Determination of optimum wheel configuration through computer simulation 2) Selection of optimum material composition 3) Optimization of the thin plate casting conditions Combination of the above technologies developed for the purpose of weight reduction resulted in the weight reduction of approximately 20% over the conventional aluminum wheels.
Technical Paper

Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection

2005-04-11
2005-01-0928
The effects of multiple-injection on exhaust emissions and performance in a small HSDI (High Speed Direct Injection) Diesel engine were examined. The causes for the improvement were investigated using both in-cylinder observation and three-dimensional numerical analysis methods. It is possible to increase the maximum torque, which is limited by the exhaust smoke number, while decreasing the combustion noise under low speed and full load conditions by advancing the timing of the pilot injection. Dividing this early-timed pilot injection into two with a small fuel amount is effective for further decreasing the noise while suppressing the increase in HC emission and fuel consumption. This is realized by the reduced amount of adhered fuel to the cylinder wall. At light loads, the amount of pilot injection fuel must be reduced, and the injection must be timed just prior to the main injection in order to suppress a possible increase in smoke and HC.
Journal Article

Air Entrainment in Diesel-Like Gas Jet by Simultaneous Flow Velocity and Fuel Concentration Measurements, Comparison of Free and Wall Impinging Jet Configurations

2011-08-30
2011-01-1828
The air entrainment process of diesel-like gas jet was studied by simultaneous measurements of concentration and velocity fields. A high pressure gas jet was used to simulate diesel injection conditions. The injection mass flow rate was similar to that of typical diesel injection. The experiments were performed in a high pressure vessel at typical ambient gas density of diesel engine during spray injection. The ambient gas density was varied from 25 to 30 kg/m₃ and three nozzle diameters, 0.2, 0.35 and 0.5 mm were used. Both free and wall-impinging jet configurations were investigated by combining Laser-Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) to obtain simultaneous planar measurements of concentration and velocity. Fuel concentration fields were used to define the edges of the jet and allow an accurate determination of the air entrainment rate both in free and wall-impinging configurations.
Technical Paper

An Analysis of Behavior for 4WD Vehicle on 4WD-chassis Dynamometer

2010-04-12
2010-01-0926
Technologies of 4WD chassis dynamometers (CHDY hereinafter) have advanced dramatically over the past several years, enabling 4WD vehicles to be tested without modifying their drive-train into 2WD. These advances have opened the use of 4WD-CHDY in all fuel economy and emission evaluation tests. In this paper, factors that influence the accuracy of fuel economy tests on 4WD CHDY are discussed. Fuel economy tests were conducted on 4WD CHDY and we found that most of the vehicle mechanical loss is the tire loss and that stabilizing the tire loss of the test vehicle is essential for the test reproducibility.
Technical Paper

An ICE Map Generation Tool Applied to the Evaluation of the Impact of Downsizing on Hybrid Vehicle Consumption

2015-09-06
2015-24-2385
Legal constraints concerning CO2 emissions have made the improvement of light duty vehicle efficiency mandatory. In result, vehicle powertrain and its development have become increasingly complex, requiring the ability to assess rapidly the effect of several technological solutions, such as hybridization or internal combustion engine (or ICE) downsizing, on vehicle CO2 emissions. In this respect, simulation is nowadays a common way to estimate a vehicle's fuel consumption on a given driving cycle. This estimation can be done with the knowledge of vehicle main characteristics, its transmission ratio and efficiency and its internal combustion engine fuel consumption map. While vehicle and transmission parameters are relatively easy to know, the ICE consumption map has to be obtained through either test bench measurements or computation.
Technical Paper

An Innovative Approach Combining Adaptive Mesh Refinement, the ECFM3Z Turbulent Combustion Model, and the TKI Tabulated Auto-Ignition Model for Diesel Engine CFD Simulations

2016-04-05
2016-01-0604
The 3-Zones Extended Coherent Flame Model (ECFM3Z) and the Tabulated Kinetics for Ignition (TKI) auto-ignition model are widely used for RANS simulations of reactive flows in Diesel engines. ECFM3Z accounts for the turbulent mixing between one zone that contains compressed air and EGR and another zone that contains evaporated fuel. These zones mix to form a reactive zone where combustion occurs. In this mixing zone TKI is applied to predict the auto-ignition event, including the ignition delay time and the heat release rate. Because it is tabulated, TKI can model complex fuels over a wide range of engine thermodynamic conditions. However, the ECFM3Z/TKI combustion modeling approach requires an efficient predictive spray injection calculation. In a Diesel direct injection engine, the turbulent mixing and spray atomization are mainly driven by the liquid/gas coupling phenomenon that occurs at moving liquid/gas interfaces.
Technical Paper

An Integration Approach on Powertrain Control System

1989-02-01
890762
Engine control systems were the precursor of scale automotive electronics systems using microcomputers. Toyota Motor Corporation introduced high - level, total control of the power train by applying system integration through introducing a multi - CPU system to the 1988 MY Toyota Camry. Integration in the ECU has been promoted to parallel with system integration. By adopting single - chip microcomputers, monolithic ICs, and hybrid ICs all designed and developed for car electronics, and semiconductor barometric pressure sensors for car electron into ECU's. etc. ever - expandable functions can be provided in a smaller and more lightweight ECU package with higher reliability.
Technical Paper

Analyses of Exhaust Hydrocarbon Compositions and Ozone Forming Potential During Cold Start

1996-10-01
961954
A newly-developed time resolved exhaust gas analysis system was utilized in this study. The hydrocarbon compositions upstream and downstream of the catalytic converter were investigated during cold start and warm up of the Federal Test Procedure(FTP), with three fuels of different aromatic contents. Although engine-out hydrocarbon emissions had high concentrations right after cold start, the specific reactivity was low. This can be explained by the selective adsorption of the high boiling point components which had a high Maximum Incremental Reactivity (MIR) in the intake manifold and engine-oil films. Thereafter, the high boiling point components were desorbed rapidly and consequently specific reactivity increased. Hydrocarbon adsorption of high boiling point components and hydrocarbon conversion of low boiling point components occurred simultaneously on the catalyst during warm up.
Technical Paper

Analysis of a New Automatic Transmission Control System for LEXUS LS400

1991-02-01
910639
A new automatic transmission, engineered from concept for “intelligent” and “anti-aging” (long life), has been designed and developed for TOYOTA's luxury passenger car, LEXUS LS400. This system, which has resulted in silky-smooth shift quality without changes in the long term, is composed of a transmission computer that interacts with engine computer, a number of sensors, an electronically controlled hydraulic unit with linear solenoid valves and assorted devices. As new control logic being developed with the aid of computer simulation to achieve distinction, the hydraulic and engine controls are combined in this system. There is a “feedback control”, where the clutch pressure is controlled according to the rate of acceleration and compensated for dispersion to applied pressure, engine torque and/or the coefficient of dynamic friction of clutches, and at the same time engine torque is reduced by retarding ignition timing.
Technical Paper

Analysis of the HC Behavior in the Air Intake System while Vehicle is Parked

2004-03-08
2004-01-0141
CARB (California Air Resources Board) has required the evaporative emissions to be restricted to 1/4th of the parameter stated in the 1995 regulations. Furthermore, hydrocarbons (hereafter, HC) from the fuel system must be reduced to near 0.0 grams, according to the PZEV (Partial Zero Emission Vehicle) regulations enforced from 2003. The wet film in intake ports and fuel leaking from the injector nozzles evaporate and diffuse while the car is parked, and consequently may cause HC to leak the air cleaner inlet. The air cleaner which prevents HC leakage from the air intake system is already in mass production. In the course of designing this product to be installed in a vehicle, the authors developed a method to estimate the amount of HC that reaches the air cleaner. Based on detailed investigation on HC distribution and the changes that occur during parking, the HC amount reaching the air cleaner was calculated by both the equation of diffusion and the equation of state.
Technical Paper

Analyzing the Influence of Gasoline Characteristics on Transient Engine Performance

1991-10-01
912392
It has been reported that the middle range of gasoline distillation temperatures strongly affects vehicle driveability and exhaust hydrocarbon (HC) emissions, and that MTBE(CH3-O-C4H9)- blended gasoline causes poor driveability during warm-up. The present paper is concerned with the results of subsequent detailed research on gasoline characteristics, exhaust emissions and driveability. In this paper, first it is demonstrated by using four models of passenger cars having different types of exhaust gas treatment system that decreased 50% distillation temperature (T50) reduces exhaust HC emission. This result indicates lowering T50 in the market will contribute to improving air quality. Secondly gasoline behavior in the intake manifold is investigated by using an engine on the dynamometer in order to clarify the mechanisms of HC emission increase and poor engine response which are caused by high T50.
X