Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A New V-8 Engine for the LEXUS LS 400

1989-09-01
892003
A new 4.0 liter V8 engine, 1UZ-FE, has been developed for the luxury sedan, LEXUS LS400. The engine has 4 camshafts and 32 valves, and weighs only 195 kg (430 lbs) having many light alloy components and carefully designed configurations. The appropriate engine displacement and high technology adopted throughout from design to manufacturing process enable the LS400 to run powerfully with excellent fuel economy and a pleasant sounds. It develops 250HP at 5600 rpm and 260ft-lbs of torque at 4400 rpm, and its fuel economy figure, well exceeds the EPA's tax charge level of 22.5mpg. These figures have been achieved through the newest technologies applied to every part of the design, such as: Well studied intake and exhaust systems, centrally located spark plug in the TOYOTA original four-valve combustion chamber, which has a narrow valve including angle, and low friction components like aluminum alloy valve lifters and well balanced moving parts.
Journal Article

Analysis of Piston Friction in Internal Combustion Engine

2013-10-14
2013-01-2515
The purpose of this study is to analyze the piston skirt friction reduction effect of a diamond-like carbon (DLC)-coated wrist pin. The floating liner method and elasto-hydrodynamic lubrication (EHL) simulation were used to analyze piston skirt friction. The experimental results showed that a DLC-coated wrist pin reduced cylinder liner friction, and that this reduction was particularly large at low engine speeds and large pin offset conditions. Friction was particularly reduced at around the top and bottom dead center positions (TDC and BDC). EHL simulation confirmed that a DLC-coated wrist pin affects the piston motion and reduces the contact pressure between the piston skirt and cylinder liner.
Technical Paper

Analysis on Behaviors of Swirl Nozzle Spray and Slit Nozzle Spray in Relation to DI Gasoline Combustion

2003-03-03
2003-01-0058
Behavior of sprays formed by slit nozzle as well as swirl nozzles with the spray cone angle in the range of 40° ∼110 ° were studied in a constant volume N2 gas chamber. The fuels used are iso-pentane, n-heptane, benzene and gasoline. The ambient pressure and temperature were raised up to 1.0 MPa and 465 K, respectively. The injection pressure was mainly set at 8 MPa. Spray penetrates at an almost constant speed for a while after injection start and begins to decelerate at a certain point. This point was judged as breakup point, based on a momentum theory on spray motion, the observation of spray inside and the analysis of the spray front reacceleration which occurs under highly volatile condition.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Colorimetric Sensor for Facile Identification of Methanol-Containing Gasoline

2017-03-28
2017-01-1288
Despite the fact that methanol is toxic to human health and causes serious damage to automobile engines and fuel system components, methanol-containing gasoline is becoming popular in some areas. Methanol demonstrates similar chemical properties to ethanol (which is already established as an additive to gasoline), so that it is difficult to identify methanol-containing gasoline without performing proper chemical analysis. In this study, we report a low-cost, portable, and easy-to-operate sensor that selectively changes color in response to methanol contained in gasoline. The colorimetric sensor will be useful for automobile users to avoid methanol-containing gasoline upon refueling.
Technical Paper

Crankshaft Positioning Utilizing Compression Force and Fast Starting with Combustion Assist for Indirect Injection Engine

2005-04-11
2005-01-1166
Toyota has been continuing to study economy and general-purpose starting technologies for smaller displacement engines, since market introduction of the 42-14V MHV in 2001. This study shows one of the strategies for nearly silent and fast starting for economy size cars, which have smaller displacement engines by utilizing a small MG (motor generator) at 12 Volts. The most significant issue for realizing advanced starting features (silent, fast and smooth) is the cost. Power electric components, especially, have a large cost disadvantage, which is generally proposed to the controlling power. So efforts were made to reduce the electrical power requirements. Also methods for minimizing additional components and utilizing conventionally existing components (e.g. sensors) are discussed in this paper. Another characteristic is that smaller displacement engines (e.g. I4, I3) have larger cranking torque difference characteristics than larger engines (e.g. I6, I8).
Technical Paper

Dependence of Ultra-High EGR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio

2006-10-16
2006-01-3386
This research investigates the influences of the injection timing, injection pressure, and compression ratio on the combustion and exhaust emissions in a single cylinder 1.0 L DI diesel engine operating with ultra-high EGR. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. Smokeless combustion is realized with an intake oxygen content of only 9-10% regardless of the injection pressure. Reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and IMEP. However, the thermal efficiency deteriorates with excessively low compression ratios.
Journal Article

Development of Bio-Based Plastics for Injection Molding

2009-04-20
2009-01-0019
Technological development of materials derived from plants (e.g., polylactic acid (PLA), and the like) is required to break dependence on fossil fuels and reduce CO2. PLA has inferior hydrolysis resistance, impact resistance, and molding ability than polypropylene (PP), and in order to overcome these disadvantages, a novel PP/PLA alloy has been conceived where PLA is incorporated into a PP matrix. By optimizing compatibilizer and elastomer addition, PLA has been successfully dispersed into a PP matrix at a sub-micron order, and interior parts have been successfully developed that fulfill the performance, appearance, and mass-production capability requirements for practical application.
Journal Article

Development of Coated Gasoline Particulate Filter Design Method Combining Simulation and Multi-Objective Optimization

2021-04-06
2021-01-0838
In recent years, GPFs (Gasoline particulate filters) have been installed in gasoline engines to comply with stricter environmental regulations in China and Europe. In particular, coated-GPFs having a catalytic purification function are required to have high conversion performances, high filter efficiencies in the sense of a high collection efficiency, and low pressure loss. It is not easy to design a filter that satisfies all these parameters. Experimental studies are being conducted, but it is costly to study in trial productions. In this technical paper, a GPF design optimization method will be proposed that combines multi-scale simulation, surrogate models by machine learning, and an optimization algorithm. By using this method, a GPF design that minimizes pressure loss while providing high conversion performance and particle collection rates that satisfy current regulations can be created.
Technical Paper

Development of Combustion Behavior Analysis Techniques in the Ultra High Engine Speed Range

2007-04-16
2007-01-0643
In order to clarify the combustion behavior in the ultra high engine speed range, a new technique has been developed. This technique is composed of ionization current detection and flame observation, and is highly heat-resistant, vibration-resistant, and has a quick response. From analyzing the flame front propagation in the high-speed research engine, it was found that the flame propagated throughout the entire cylinder over almost the same crank angle period irrespective of engine speed introduction.
Technical Paper

Development of Electronically Controlled Brake System for Hybrid Vehicle

2002-03-04
2002-01-0300
We expect to reduce exhaust gas emissions further and improve fuel consumption, by developing a new brake system (called brake-by-wire system) to control the friction brake force and the regenerative brake force of the two motors, one each at front and rear axle. Within this new system we developed the new technology listed below. 1 To compensate the changes of the regenerative brake force of front and rear motors, the friction brake force is controlled by adjusting the wheel cylinder hydraulic pressures. 2 The pressure of each wheel cylinder is controlled by linear solenoid valves. So the hydraulic pressure of wheel cylinders is controlled individually and smoothly. This brake system also operates ABS, VSC, TRC functions. The vehicle stability performance is improved by controlling the braking and driving torque of two motors and also controlling the friction brake torque cooperatively.
Technical Paper

Development of Firing Fuel Economy Engine Dyno Test Procedure for JASO Ultra Low Viscosity Engine Oil Standard (JASO GLV-1)

2019-10-19
2019-01-2296
Fuel economy measurement test is one of important engine tests to establish fuel economy engine oil performance standard to support CO2 emission reduction efforts in the automotive industry. On the other hand, it is difficult to develop an engine test without appropriate engine hardware that is designed to utilize low viscosity engine oils. A new firing fuel economy test was developed based on 2ZR-FXE engine designed for hybrid powertrain. The new test procedure aimed to provide the tool to evaluate new low viscosity grades such as 0W-8 and 0W-12 that were adapted in SAE J300 in 2015.
Technical Paper

Development of Gasoline Injector Cleaner for Port Fuel Injection and Direct Injection

2016-04-05
2016-01-0830
Port fuel injection (PFI) injector and direct fuel injection (DI) injector clogging from deposits caused by poor fuel quality, is a concern in emerging countries. Then DI injector deposits are sometimes cleaned by injector cleaners in such situation. However deposit cleaners for PFI injectors have not been developed, because of the lack of research of PFI injector deposits. Through chemical analysis, this study showed them to be water-soluble deposits. Subsequently success was achieved in developing a new gasoline injector cleaner applicable to injector deposits in both types of injectors, through optimization of a surface active agent.
Technical Paper

Development of ILSAC GF-5 0W-20 Fuel Economy Gasoline Engine Oil

2012-09-10
2012-01-1614
We report in this paper our newly developed technology applied to ILSAC GF-5 0W-20 engine oil that offers great fuel economy improvement over GF-4 counterpart, which is a key performance requirement of modern engine oil to reduce CO2 emissions from a vehicle. Our development strategy of the oil consisted of two elements: (1) further friction reduction under mixed and hydrodynamic lubrication conditions considering use of roller rocker arm type valve train system and (2) lowering viscosity at low temperature conditions to improve fuel economy under cold cycles. Use of roller rocker arm type valve train system has been spreading, because of its advantage of reducing mechanical friction. Unlike engine with conventional direct-acting type valve train system, lubrication condition of engine with the roller rocker arm type valve train system has higher contribution of mixed or hydrodynamic lubrication conditions rather than boundary lubrication condition.
Technical Paper

Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept

2016-04-05
2016-01-0675
To improve the thermal efficiency of an internal combustion engine, the application of ceramics to heat loss reduction in the cylinders has been studied [1-2]. The approach taken has focused on the low heat conductivity and high heat resistance of the ceramic. However, since the heat capacity of the ceramic is so large, there is a problem in that the wall temperature increases during the combustion cycle. This leads to a decrease in the charging efficiency, as well as knocking in gasoline engines. To overcome these problems, the application of thermal insulation without raising the gas temperature during the intake stroke has been proposed [3-4]. As a means of achieving this, we developed a "temperature swing heat insulation coating" [5, 6, 7, 8, 9]. This reduces the heat flux from the combustion chamber into the cooling water by making the wall temperature follow the gas temperature as much as possible during the expansion and exhaust strokes.
Technical Paper

Development of Low Pressure and High Performance GPF Catalyst

2018-04-03
2018-01-1261
Awareness of environmental protection with respect to the particulate number (PN) in the exhaust emissions of gasoline direct injection (GDI) engine vehicles has increased. In order to decrease the emission of particulate matter (PM), suppressing emissions by improving engine combustion, and/or filtering PM with a gasoline particulate filter (GPF) is effective. This paper describes the improvement of the coated GPF to reduce pressure drop while securing three-way performance and PN filtration efficiency. It was necessary to load a certain amount of washcoat on the GPF to add the three-way function, but this led to an increase in pressure drop that affected engine power. The pressure drop was influenced by the gas permeation properties of the filter wall.
Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
Technical Paper

Development of Vehicle Dynamics Management System for Hybrid Vehicles - ECB System for Improved Environmental and Vehicle Dynamic Performance -

2002-05-07
2002-01-1586
In anticipation of the increased needs to further reduce exhaust gas emissions and improve fuel consumption, a new brake-by-wire system called an “Electronically Controlled Brake” system (hereafter referred to as “ECB”) has been developed. With this brake system, which is able to smoothly control the hydraulic pressure that is applied to each of the four wheel cylinders on an individual basis, functional enhancements can be added by appropriately modifying its software. This paper discusses the necessity of the ECB, the system configuration, and the results of its application on hybrid vehicles.
Technical Paper

Development of a Mechanical Pilot Injection Device for Automotive Diesel Engines

1989-09-01
891962
It is well known that pilot injection is an effective method of reducing diesel knock noise during idling, but no actual system has as yet been commercially produced. With the objective of developing a practicable pilot injection device, simulations were conducted of various simple mechanisms in order to determine the best specifications and analyze the fuel injection characteristics. Based on these results, a chamber expansion type pilot injection device, which enables the injection pump pressure chamber volume to be increased at a given moment during the fuel compression stroke, has been developed and has been found to remarkably decrease knock noise during cold idling. An investigation into the effects of this device on output power, exhaust emissions, cold startability and durability revealed that it is eminently suitable for practical application.
Technical Paper

Development of a New Valvetrain Wear Test - The Sequence IVB Test

2016-04-05
2016-01-0891
The study described in this paper covers the development of the Sequence IVB low-temperature valvetrain wear test as a replacement test platform for the existing ASTM D6891 Sequence IVA for the new engine oil category, ILSAC GF-6. The Sequence IVB Test uses a Toyota engine with dual overhead camshafts, direct-acting mechanical lifter valvetrain system. The original intent for the new test was to be a direct replacement for the Sequence IVA. Due to inherent differences in valvetrain system design between the Sequence IVA and IVB engines, it was necessary to alter existing test conditions to ensure adequate wear was produced on the valvetrain components to allow discrimination among the different lubricant formulations. A variety of test conditions and wear parameters were evaluated in the test development. Radioactive tracer technique (RATT) was used to determine the wear response of the test platform to various test conditions.
X