Refine Your Search

Topic

Author

Search Results

Technical Paper

An Experimentally Based Statistical Model for Predicting Motorcycle Shift Patterns

2020-04-14
2020-01-1046
Emissions from manual transmission motorcycles have been shown to be dependent upon transmission shift patterns. Presently, when undergoing an emission test for an Environmental Protection Agency (EPA) certification a manufacturer can designate their own shift points during the cycle or utilize an EPA prescribed shift pattern which uses basic up or down shifts at specific speeds regardless of the type of motorcycle, 40 CFR 86.528-78(h). In order to predict the real-life emissions from motorcycles, a comparative real-life shift pattern has been developed which can then be used to evaluate the suitability of the manufacturer’s shift schedule. To that end, a model that predicts shift points for motorcycles has been created. This model is based on the actual operation of different motorcycles by real life operators in a combined city and highway setting.
Technical Paper

Characterization of the Fluid Deaeration Device for a Hydraulic Hybrid Vehicle System

2008-04-14
2008-01-0308
The attractiveness of the hydraulic hybrid concept stems from the high power density and efficiency of the pump/motors and the accumulator. This is particularly advantageous in applications to heavy vehicles, as high mass translates into high rates of energy flows through the system. Using dry case hydraulic pumps further improves the energy conversion in the system, as they have 1-4% better efficiency than traditional wet-case pumps. However, evacuation of fluid from the case introduces air bubbles and it becomes imperative to address the deaeration problems. This research develops a bubble elimination efficiency testing apparatus (BEETA) to establish quantitative results characterizing bubble removal from hydraulic fluid in a cyclone deaeration device. The BEETA system mixes the oil and air according to predetermined ratio, passes the mixture through a cyclone deaeration device, and then measures the concentration of air in the exiting fluid.
Technical Paper

Development of Adjustment Factors for the EPA City and Highway MPG Values

1984-02-01
840496
This paper describes the development of adjustment factors applicable to the EPA City and Highway MPG values. The paper discusses the data bases used, and the analytical methods employed to arrive at adjustment factors of 0.90 for the EPA City MPG value and 0.78 for the EPA Highway MPG value.
Technical Paper

Development of Benchmarking Methods for Electric Vehicle Drive Units

2024-04-09
2024-01-2270
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a development project was started to study various test methods to benchmark Electric Drive Units (EDUs) consisting of an electric motor, inverter and a speed-reduction gearset. Several test methods were identified for consideration, including both in-vehicle testing of the complete EDU and stand-alone testing of the EDU and its subcomponents after removal from the vehicle. In all test methods explored, sweeps of speed and torque test points were conducted while collecting key EDU data required to determine efficiency, including motor torque and speed, direct current (DC) battery voltage and current into the inverter, and three-phase alternating current (AC) phase voltages and currents out of the inverter and into the electric motor.
Technical Paper

Emission Patterns of Diesel-Powered Passenger Cars - Part II

1977-02-01
770168
An experimental program was conducted to characterize the gaseous and particulate emissions from a 1975 Peugeot 504D light duty diesel-powered vehicle. The vehicle was tested over the 1975 Federal Test Procedure, Highway Fuel Economy Test, and Sulfate Emissions Test driving cycles using four different fuels covering a fair range of composition, density, and sulfur content. In addition to fuel economy and regulated gaseous emission measurements of hydrocarbons, carbon monoxide, and oxides of nitrogen, emission measurements were also obtained for non-regulated pollutants including sulfur dioxide, sulfates, aldehydes, benzo[a]pyrene, carbonyl sulfide, hydrogen cyanide, nonreactive hydrocarbons, and particulate matter. The results are discussed in terms of emission trends due to either fuel type or driving cycle influence.
Technical Paper

Evaluation of Emission Control Technology Approaches for Heavy-Duty Gasoline Engines

1978-02-01
780646
This paper summarizes a laboratory effort toward reducing nine-mode cycle composite emissions and fuel consumption in a heavy-duty gasoline engine, while retaining current durability performance. Evaluations involved standard carburetors, a Dresserator inductor, a Bendix electronic fuel injection system, exhaust manifold thermal reactors, and exhaust gas recirculation, along with other components and engine operating parameters. A system consisting of electronic fuel injection, thermal reactors with air injection and exhaust gas recirculation, was assembled which met specified project goals. An oxidation catalyst was included as an add-on during the service accumulation demonstration. In addition, the driveability of this engine configuration was demonstrated.
Technical Paper

Evaluation of Heat Storage Technology for Quick Engine Warm-Up

1992-10-01
922244
The Schatz Heat Battery stores excess heat energy from the engine cooling system during vehicle operation. This excess energy may be returned to the coolant upon the ensuing cold start, shortening the engine warm-up period and decreasing cold start related emissions of unburned fuel and carbon monoxide (CO). A Heat Battery was evaluated on a test vehicle to determine its effect on unburned fuel emissions, CO emissions, and fuel economy over the cold start portion (Bag 1) of the Federal Test Procedure (FTP) at 24°C and -7°C ambient conditions. The Heat Battery was mounted in a vehicle fueled alternately with indolene clear (unleaded gasoline) and M85 high methanol blend fuels. Several Heat Battery/coolant flow configurations were evaluated to determine which would result in lowest cold start emissions.
Technical Paper

Evaluation of a Passenger Car Equipped with a Direct Injection Neat Methanol Engine

1992-02-01
920196
The cyclic and steady-state vehicle emissions, fuel economy, performance, and cold start behavior of an automobile equipped with a direct injection methanol engine are compared with those of three other comparable vehicles. One of the comparable vehicles was powered by a gasoline-fueled engine, and the other two were Diesels. One of the Diesel-powered vehicles was naturally aspirated and the other was turbocharged. All evaluations were made using the same road load horsepower and equivalent test weight. All the evaluations were conducted at low mileage. The emissions of the methanol vehicle are compared to California low emission vehicle standards, and to the emissions of another methanol vehicle.
Technical Paper

Fuel Economy of In-Use Passenger Cars: Laboratory and Road

1981-06-01
810780
This report describes an evaluation of fuel economy of in-use passenger cars conducted by the U.S. Environmental Protection Agency during 1980. A total of 440 vehicles from the 1975-1980 model years were obtained from private owners in several cities. Each vehicle was tested according to the Federal Test Procedure and the Highway Fuel Economy Test. After the laboratory testing, the owners were asked to record their next four fuel purchases on a reply postcard. The results from the survey were analyzed and compared with the test results, estimates by the owner, and the values published in EPA's Gas Mileage Guide.
Technical Paper

Identifying Excess Emitters with a Remote Sensing Device: A Preliminary Analysis

1991-08-01
911672
There has been considerable interest in applying remote measuring methods to sample in-use vehicle emissions, and to characterize fleet emission behavior. A Remote Sensing Device (RSD) was used to measure on-road carbon monoxide (CO) emissions from approximately 350 in-use vehicles that had undergone transient mass emission testing at a centralized I/M lane. On-road hydrocarbon (HC) emissions were also measured by the RSD on about 50 of these vehicles. Analysis of the data indicates that the RSD identified a comparable number of the high CO emitters as the two speed I/M test only when an RSD cutpoint much more stringent than current practice was used. Both RSD and I/M had significant errors of omission in identifying High CO Emitters based on the mass emission test. The test data were also used to study the ability of the RSD to characterize fleet CO emissions.
Technical Paper

Impact of Real-World Drive Cycles on PHEV Battery Requirements

2009-04-20
2009-01-1383
Plug-in hybrid electric vehicles (PHEVs) have the ability to significantly reduce petroleum consumption. Argonne National Laboratory (Argonne), working with the FreedomCAR and Fuels Partnership, helped define the battery requirements for PHEVs. Previous studies demonstrated the impact of the vehicle's characteristics, such as its class, mass, or electrical accessories, on the requirements. However, questions on the impact of drive cycles remain outstanding. In this paper, we evaluate the consequences of sizing the electrical machine and the battery to follow standard drive cycles, such as the urban dynamometer driving schedule (UDDS), as well as real-world drive cycles in electric vehicle (EV) mode. The requirements are defined for several driving conditions (e.g., urban, highway) and types of driving behavior (e.g., smooth, aggressive).
Technical Paper

In-Use Emissions of 1980 and 1981 Passenger Cars: Results of EPA Testing

1982-02-01
820975
This paper presents the results of several emission testing programs conducted by the U.S. Environmental Protection Agency. The test vehicles were primarily 1980 and 1981 passenger cars which were obtained at random from private owners. Some 1982 models were also tested. The 1328 vehicles were selected from the Los Angeles area as well as from a number of other low-altitude locations. The test sequence included the Federal Test Procedure, the Highway Fuel Economy Test and several short cycle tests. The primary purpose of the program was to gather information on current vehicles which could be used in calculations and projections of air quality and aid development of programs to improve it. The results of the program indicate that these vehicles are capable of maintaining low emission levels although high levels are also possible due to defects, deterioration, or tampering. Inspection/Maintenance programs are a feasible and effective means for correcting high levels when they occur.
Technical Paper

Inspection/Maintenance in the 1990's

1987-08-01
870621
In the 1990's there will be a different mix of vehicle technologies than existed in the late 1970's when inspection/Maintenance (I/M) programs were first mandated. These changes include the widespread use of “closed-loop” computer control of engine parameters and fuel injection. Several studies by EPA are examined to determine the effect of these changes on existing I/M programs and to investigate new methods of vehicle inspection. The report discusses the effectiveness of a standard idle emission test versus other inspection methods, the role of proper preconditioning, self-diagnostic trouble code checks as a method to identify high emitting vehicles, uncertainties in predicting tampering and misfueling rates for the future, problems with decentralized programs, and the effectiveness of I/M repairs in reducing vehicle emissions as measured on the Federal Test Procedure.
Technical Paper

Investigation into the Vehicle Exhaust Emissions of High Percentage Ethanol Blends

1995-02-01
950777
Six in-use vehicles were tested on a baseline gasoline and nine gasoline/ethanol blends to determine the effect of ethanol content in fuels on automotive exhaust emissions and fuel economy. The baseline gasoline was representative of average summer gasoline and served as the base from which the other fuels were blended. For the majority of the vehicles, total hydrocarbon, and carbon monoxide exhaust emissions as well as fuel economy decreased while NOx and acetaldehyde exhaust emissions increased as the ethanol content in the test fuel increased. Formaldehyde and carbon dioxide emissions were relatively unaffected by the addition of ethanol. The emission responses to the increased fuel oxygen levels were consistent with what would be expected from leaning-out the air/fuel ratio for a spark ignition engine. The results are shown graphically and a linear regression is performed utilizing the method of least squares to investigate statistically significant trends in the data.
Technical Paper

Light Duty Automotive Fuel Economy … Trends through 1982

1982-02-01
820300
EPA Fuel economy figures are presented for model year 1982 cars and light duty trucks. Comparisons with the MPG figures of prior years are included. Sales penetrations of various vehicle, engine, and emission control design features are given, and domestic cars' MPG characteristics are compared to that of imports', gasoline vehicle MPG is compared to Diesel MPG, and 49-states MPG is compared to California MPG. Usage of newer vehicle technologies is continuing to increase, leading to continued growth in fuel economy capability in spite of stringent emission standards.
Technical Paper

Light Duty Automotive Fuel Economy … Trends thru 1985

1985-05-01
850550
This, the thirteenth in a series of papers on trends in EPA fuel economy, covers both passenger cars and light trucks and concentrates on the current model year, 1985. It differs from previous papers in two ways: 1) Model years 1975, 1980 and 1985 are highlighted, with the model years in between these rarely discussed; 2) The progress of the industry, as a whole, in improving fuel economy since 1975 is emphasized, and individual manufacturer data are de-emphasized. Conclusions are presented on the trends in fuel economy of the car and light truck fleets; the Domestic, European and Japanese market sectors; and various vehicle classes.
Technical Paper

Light Duty Automotive Fuel Economy …Trends through 1981

1981-02-01
810386
EPA new-model fuel economy figures are presented for passenger vehicles and light duty trucks (those with GVW ratings up to 8500 lbs). The 1981 models are emphasized, with some comparisons to prior years included. Reader familiarity with the EPA tests, data bases, and analytical methods is assumed. Principal two-way analyses include comparisons of domestic vs. import, gasoline vs. Diesel, and Federal (49-state) vs. California vehicles. Sales fractions for a number of vehicle and engine emission control design features are included. The principal finding is that increased use of newer vehicle and emission control technologies in 1981 has accompanied significant fuel economy gains in spite of the tougher 1981 emission standards.
Technical Paper

Light Duty Automotive Fuel Economy… Trends thru 1983

1983-02-01
830544
This, the eleventh in a series of Papers on EPA fuel economy trends, emphasizes the current Model Year (1983) as usual, but also gives increased emphasis to trends in vehicle technology, including catalyst and transmission subclasses. Final “CAFE”* production volumes and MPG figures have been used to update the data bases through the 1980 Model Year, and an analytic method used in the past to allocate year-to-year fleet MPG changes to specific causes, such as weight mix shifts, has been reinstituted. Conclusions are presented on the relation between fuel economy and emission standards, catalyst types, and transmission types.
Technical Paper

Light Duty Automotive Trends Through 1986

1986-04-01
860366
This, the fourteenth in this series of papers, examines trends in fuel economy, technology usage and estimated 0 to 60 MPH acceleration time for model year 1986 passenger cars. Comparisons with previous year's data are made for the fleet as a whole and using three measures of vehicle/engine size: number of cylinders, EPA car class, and inertia weight class. Emphasis on vehicle performance and fuel metering has been expanded and analysis of individual manufacturers has been deemphasized; comparisons of the Domestic, European, and Japanese market sectors are given increased emphasis.
Technical Paper

Modeling and Controls Development of 48 V Mild Hybrid Electric Vehicles

2018-04-03
2018-01-0413
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The ALPHA desktop application was developed using MATLAB/Simulink. The ALPHA tool was used to evaluate technology effectiveness and off-cycle technologies such as air-conditioning, electrical load reduction technology and road load reduction technologies of conventional, non-hybrid vehicles for the Midterm Evaluation of the 2017-2025 LD GHG rule by the U.S. Environmental Protection Agency (EPA) Office of Transportation and Air Quality (OTAQ).
X