Refine Your Search

Topic

Author

Search Results

Journal Article

Alternative Heavy-Duty Engine Test Procedure for Full Vehicle Certification

2015-09-29
2015-01-2768
In 2015 the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Transportation's National Highway Traffic Safety Administration (NHTSA) proposed a new steady-state engine dynamometer test procedure by which heavy-duty engine manufacturers would be required to create engine fuel rate versus engine speed and torque “maps”.[1] These maps would then be used within the agencies' Greenhouse Gas Emission Model (GEM)[2] for full vehicle certification to the agencies' proposed heavy-duty fuel efficiency and greenhouse gas (GHG) emissions standards. This paper presents an alternative to the agencies' proposal, where an engine is tested over the same duty cycles simulated in GEM. This paper explains how a range of vehicle configurations could be specified for GEM to generate engine duty cycles that would then be used for engine testing.
Technical Paper

An Experimentally Based Statistical Model for Predicting Motorcycle Shift Patterns

2020-04-14
2020-01-1046
Emissions from manual transmission motorcycles have been shown to be dependent upon transmission shift patterns. Presently, when undergoing an emission test for an Environmental Protection Agency (EPA) certification a manufacturer can designate their own shift points during the cycle or utilize an EPA prescribed shift pattern which uses basic up or down shifts at specific speeds regardless of the type of motorcycle, 40 CFR 86.528-78(h). In order to predict the real-life emissions from motorcycles, a comparative real-life shift pattern has been developed which can then be used to evaluate the suitability of the manufacturer’s shift schedule. To that end, a model that predicts shift points for motorcycles has been created. This model is based on the actual operation of different motorcycles by real life operators in a combined city and highway setting.
Technical Paper

Automotive Hydrocarbon Emission Patterns in the Measurement of Nonmethane Hydrocarbon Emission Rates

1977-02-01
770144
The advent of emission control technology has resulted in significant changes in both the total mass and detailed patterns of hydrocarbons emitted from automobiles. Emission rates of 56 hydrocarbons from 22 motor vehicles, including catalyst and noncatalyst configurations, were determined for the Federal Urban Driving Cycle. An increased relative abundance of methane is indicated for vehicles equipped with oxidation catalysts. In view of the photochemically non-reactive nature of methane, simple and economic procedures for determination of vehicle nonmethane hydrocarbon emission rates are evaluated. In general the procedures evaluated require independent total hydrocarbon and methane analysis, with the nonmethane hydrocarbon level calculated by difference. The procedures are evaluated by comparison of indicated nonmethane hydrocarbon emission rates with rates obtained by summation of individual compound rates determined by advanced gas chromatographic procedures.
Technical Paper

Characterization of the Fluid Deaeration Device for a Hydraulic Hybrid Vehicle System

2008-04-14
2008-01-0308
The attractiveness of the hydraulic hybrid concept stems from the high power density and efficiency of the pump/motors and the accumulator. This is particularly advantageous in applications to heavy vehicles, as high mass translates into high rates of energy flows through the system. Using dry case hydraulic pumps further improves the energy conversion in the system, as they have 1-4% better efficiency than traditional wet-case pumps. However, evacuation of fluid from the case introduces air bubbles and it becomes imperative to address the deaeration problems. This research develops a bubble elimination efficiency testing apparatus (BEETA) to establish quantitative results characterizing bubble removal from hydraulic fluid in a cyclone deaeration device. The BEETA system mixes the oil and air according to predetermined ratio, passes the mixture through a cyclone deaeration device, and then measures the concentration of air in the exiting fluid.
Technical Paper

Development of Adjustment Factors for the EPA City and Highway MPG Values

1984-02-01
840496
This paper describes the development of adjustment factors applicable to the EPA City and Highway MPG values. The paper discusses the data bases used, and the analytical methods employed to arrive at adjustment factors of 0.90 for the EPA City MPG value and 0.78 for the EPA Highway MPG value.
Technical Paper

Development of Benchmarking Methods for Electric Vehicle Drive Units

2024-04-09
2024-01-2270
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a development project was started to study various test methods to benchmark Electric Drive Units (EDUs) consisting of an electric motor, inverter and a speed-reduction gearset. Several test methods were identified for consideration, including both in-vehicle testing of the complete EDU and stand-alone testing of the EDU and its subcomponents after removal from the vehicle. In all test methods explored, sweeps of speed and torque test points were conducted while collecting key EDU data required to determine efficiency, including motor torque and speed, direct current (DC) battery voltage and current into the inverter, and three-phase alternating current (AC) phase voltages and currents out of the inverter and into the electric motor.
Technical Paper

Effect of Engine Condition on FTP Emissions and In-Use Repairability

1992-02-01
920822
Twenty in-use vehicles that had failed the I/M test in the State of Michigan were inspected for engine mechanical condition as well as the state of the emission control system. Mass emission tests were conducted before and after repairs to the emission control system. The internal engine condition (i.e., high or low levels of cylinder leakage, or compression difference) showed little effect on the ability of the repaired vehicles to achieve moderate mass emission levels. Nine of the twenty vehicles were recruited after three years, and with the exception of tampering, the original emission control system repairs proved to be durable.
Technical Paper

Effect of Single Wide Tires and Trailer Aerodynamics on Fuel Economy and NOx Emissions of Class 8 Line-Haul Tractor-Trailers

2005-11-01
2005-01-3551
We hypothesize that components designed to improve fuel economy by reducing power requirements should also result in a decrease in emissions of oxides of nitrogen (NOx). Fuel economy and NOx emissions of a pair of class 8 tractor-trailers were measured on a test track to evaluate the effects of single wide tires and trailer aerodynamic devices. Fuel economy was measured using a modified version of SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and correlated to fuel meter measurements. Tests were conducted using drive cycles simulating highway operations at 55 mph and 65 mph and suburban stop-and-go traffic. The tests showed a negative correlation (significant at p < 0.05) between fuel economy and NOx emissions. Single wide tires and trailer aerodynamic devices resulted in increased fuel economy and decreased NOx emissions relative to the baseline tests.
Technical Paper

Emission Patterns of Diesel-Powered Passenger Cars - Part II

1977-02-01
770168
An experimental program was conducted to characterize the gaseous and particulate emissions from a 1975 Peugeot 504D light duty diesel-powered vehicle. The vehicle was tested over the 1975 Federal Test Procedure, Highway Fuel Economy Test, and Sulfate Emissions Test driving cycles using four different fuels covering a fair range of composition, density, and sulfur content. In addition to fuel economy and regulated gaseous emission measurements of hydrocarbons, carbon monoxide, and oxides of nitrogen, emission measurements were also obtained for non-regulated pollutants including sulfur dioxide, sulfates, aldehydes, benzo[a]pyrene, carbonyl sulfide, hydrogen cyanide, nonreactive hydrocarbons, and particulate matter. The results are discussed in terms of emission trends due to either fuel type or driving cycle influence.
Technical Paper

Evaluating Real-World Fuel Economy on Heavy Duty Vehicles using a Portable Emissions Measurement System

2006-10-31
2006-01-3543
Current SAE practices for evaluating potential improvements in fuel economy on heavy-duty vehicles rely on gravimetric measurements of fuel tanks. However, the recent evolution of portable emissions measurement systems (PEMS) offers an alternative means of evaluating real-world fuel economy that may be faster and more cost effective. This paper provides a direct comparison of these two methods based on a recent EPA study conducted at Southwest Research Institute. More than 228 on-road tests were performed on two pairs of class 8 tractor-trailers according to SAE test procedure J1321 in an assessment of various chassis components designed to reduce drag losses on the vehicle. During these tests, SEMTECH-D™ portable emissions measurement systems from Sensor's, Incorporated were operating in each of the vehicles to evaluate emissions and to provide a redundant measure of fuel economy.
Technical Paper

Evaluation of Heat Storage Technology for Quick Engine Warm-Up

1992-10-01
922244
The Schatz Heat Battery stores excess heat energy from the engine cooling system during vehicle operation. This excess energy may be returned to the coolant upon the ensuing cold start, shortening the engine warm-up period and decreasing cold start related emissions of unburned fuel and carbon monoxide (CO). A Heat Battery was evaluated on a test vehicle to determine its effect on unburned fuel emissions, CO emissions, and fuel economy over the cold start portion (Bag 1) of the Federal Test Procedure (FTP) at 24°C and -7°C ambient conditions. The Heat Battery was mounted in a vehicle fueled alternately with indolene clear (unleaded gasoline) and M85 high methanol blend fuels. Several Heat Battery/coolant flow configurations were evaluated to determine which would result in lowest cold start emissions.
Technical Paper

Evaluation of a Passenger Car Equipped with a Direct Injection Neat Methanol Engine

1992-02-01
920196
The cyclic and steady-state vehicle emissions, fuel economy, performance, and cold start behavior of an automobile equipped with a direct injection methanol engine are compared with those of three other comparable vehicles. One of the comparable vehicles was powered by a gasoline-fueled engine, and the other two were Diesels. One of the Diesel-powered vehicles was naturally aspirated and the other was turbocharged. All evaluations were made using the same road load horsepower and equivalent test weight. All the evaluations were conducted at low mileage. The emissions of the methanol vehicle are compared to California low emission vehicle standards, and to the emissions of another methanol vehicle.
Technical Paper

Exhaust Emissions from Heavy-Duty Trucks Tested on a Road Course and by Dynamometer

1975-02-01
750901
This is a summary compilation and analysis of exhaust-emission results and operating parameters from forty-five heavy-duty gasoline and diesel-powered vehicles tested over a 7.24-mile road course known as the San Antonio Road Route (SARR); and, for correlative purposes, on a chassis dynamometer.(2) Exhaust samples were collected and analyzed using the Constant Volume Sampler (CVS) technique similar to that used in emission testing of light-duty vehicles. On the road course, all equipment and instrumentation were located on the vehicle while electrical power was supplied by a trailer-mounted generator. In addition to exhaust emissions, operating parameters such as vehicle speed, engine speed, manifold vacuum, and transmission gear were simultaneously measured and recorded on magnetic tape. The forty-five vehicles tested represent various model years, GVW ratings, and engine types and sizes.
Technical Paper

Fuel Economy Improvements and NOx Reduction by Reduction of Parasitic Losses: Effect of Engine Design

2006-10-31
2006-01-3474
Reducing aerodynamic drag and tire rolling resistance in trucks using cooled EGR engines meeting EPA 2004 emissions standards has been observed to result in increases in fuel economy and decreases in NOx emissions. We report here on tests conducted using vehicles equipped a non-EGR engine meeting EPA 2004 emission standards and an electronically-controlled engine meeting EPA 1998 emissions standards. The effects of trailer fairings and single-wide tires on fuel economy and NOx emissions were tested using SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and by the gravimetric method specified by test procedure J1321. Fuel consumption decreased and fuel economy increased by a maximum of about 10 percent, and NOx emissions decreased by a maximum of 20 percent relative to baseline.
Technical Paper

Fuel Economy of In-Use Passenger Cars: Laboratory and Road

1981-06-01
810780
This report describes an evaluation of fuel economy of in-use passenger cars conducted by the U.S. Environmental Protection Agency during 1980. A total of 440 vehicles from the 1975-1980 model years were obtained from private owners in several cities. Each vehicle was tested according to the Federal Test Procedure and the Highway Fuel Economy Test. After the laboratory testing, the owners were asked to record their next four fuel purchases on a reply postcard. The results from the survey were analyzed and compared with the test results, estimates by the owner, and the values published in EPA's Gas Mileage Guide.
Technical Paper

IM240 Repair Verification: An Inexpensive Dynamometer Method

1994-03-01
940431
An inexpensive system was designed that would allow repair shops to verify the adequacy of repairs made to cars that had previously failed the new high-tech I/M test (IM240). Before and after repair tests on a limited number of vehicles were performed with both official IM240 and prototype repair grade (RG240) equipment systems. Analyses were performed to determine if the RG240 system concept is capable of determining if the repairs performed resulted in adequate emissions reductions to assure a passing IM240 retest. This study focuses on development of a prototype RG240 system consisting of a 100 SCFM CVS, a dynamometer with an eddy current power absorber and non-adjustable 2000 pound inertia flywheel, and a BAR 90 emissions analyzer with an additional nitric oxide analyzer.
Technical Paper

Identifying Excess Emitters with a Remote Sensing Device: A Preliminary Analysis

1991-08-01
911672
There has been considerable interest in applying remote measuring methods to sample in-use vehicle emissions, and to characterize fleet emission behavior. A Remote Sensing Device (RSD) was used to measure on-road carbon monoxide (CO) emissions from approximately 350 in-use vehicles that had undergone transient mass emission testing at a centralized I/M lane. On-road hydrocarbon (HC) emissions were also measured by the RSD on about 50 of these vehicles. Analysis of the data indicates that the RSD identified a comparable number of the high CO emitters as the two speed I/M test only when an RSD cutpoint much more stringent than current practice was used. Both RSD and I/M had significant errors of omission in identifying High CO Emitters based on the mass emission test. The test data were also used to study the ability of the RSD to characterize fleet CO emissions.
Technical Paper

Impact of Real-World Drive Cycles on PHEV Battery Requirements

2009-04-20
2009-01-1383
Plug-in hybrid electric vehicles (PHEVs) have the ability to significantly reduce petroleum consumption. Argonne National Laboratory (Argonne), working with the FreedomCAR and Fuels Partnership, helped define the battery requirements for PHEVs. Previous studies demonstrated the impact of the vehicle's characteristics, such as its class, mass, or electrical accessories, on the requirements. However, questions on the impact of drive cycles remain outstanding. In this paper, we evaluate the consequences of sizing the electrical machine and the battery to follow standard drive cycles, such as the urban dynamometer driving schedule (UDDS), as well as real-world drive cycles in electric vehicle (EV) mode. The requirements are defined for several driving conditions (e.g., urban, highway) and types of driving behavior (e.g., smooth, aggressive).
Technical Paper

In-Use Emissions of 1980 and 1981 Passenger Cars: Results of EPA Testing

1982-02-01
820975
This paper presents the results of several emission testing programs conducted by the U.S. Environmental Protection Agency. The test vehicles were primarily 1980 and 1981 passenger cars which were obtained at random from private owners. Some 1982 models were also tested. The 1328 vehicles were selected from the Los Angeles area as well as from a number of other low-altitude locations. The test sequence included the Federal Test Procedure, the Highway Fuel Economy Test and several short cycle tests. The primary purpose of the program was to gather information on current vehicles which could be used in calculations and projections of air quality and aid development of programs to improve it. The results of the program indicate that these vehicles are capable of maintaining low emission levels although high levels are also possible due to defects, deterioration, or tampering. Inspection/Maintenance programs are a feasible and effective means for correcting high levels when they occur.
X