Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Dynamometer for Automobile Brake Squeal Study

2001-04-30
2001-01-1599
Automobile brake squeal has been experimentally studied in many ways over the past 65 years. A large body of published research and a substantial amount of unpublished work have attempted to experimentally define the variables involved with and describe the system dynamics initiating the friction-induced self-excited vibration. Much of this work has centered on pin on disk type test rigs used to characterize the contact mechanics and/or friction laws without considering the brake system influence. This paper describes a dynamometer designed and constructed to study brake squeal on a system level.
Technical Paper

An Experimental Study of the Chassis Vibration Transmissibility Applying a Spectral-based Inverse Substructuring Technique

2005-05-16
2005-01-2470
A proposed multi-coordinate spectral-based inverse substructuring approach is applied experimentally to examine the vibration transmissibility through chassis mounts. In this formulation, the vehicle system is partitioned into two substructures. One substructure comprises of the chassis and suspension, while the second one is the body structure and other attached components. The approach yields the free substructure dynamic characteristics that are extracted from the measured coupled system response spectra. The resultant free substructure transfer functions are verified by comparison of the re-synthesized results to the actual vehicle system measurements. A real life vehicle setup is utilized to demonstrate the salient features and capabilities of this approach, which includes the ability to compute the main structure-borne paths, dynamic interactions between the chassis and body, and interior noise and vibration response.
Technical Paper

Application of FRF-Based Inverse Substructuring Analysis to Vehicle NVH Problems

2003-05-05
2003-01-1607
A multi-coordinate FRF-based inverse substructuring approach is proposed to partition a vehicle system into two or more substructures, which are coupled at discrete interface points. The joint and free substructure dynamic characteristics are then extracted from the coupled system response spectra. Depending on the actual form of the structural coupling terms, three forms of the coupling matrix are assumed here. The most general one constitutes the non-diagonal form, and the other two simpler cases are the block-diagonal and purely diagonal representations that can be used to simplify testing process and overcome computational problems. The paper is focused on the investigation of the durability of these three formulations when the input FRFs are noise contaminated. A finite element model of a simplified vehicle system is used as the case study.
Technical Paper

Development of a Photoconductive Gamma Dosimeter for Space Application

1994-04-01
941204
Demand for accurate and reliable gamma dosimetry in a radiation environment and the unsatisfactory performance of the existing devices has given rise to the need for a better gamma measurement system, capable of operating in a high dose rate environment and withstanding a high total dose. The concept of a new gamma dose measurement device based on the principle of photoconductivity has the potential of filling this void. Preliminary experiments and analyses indicated that the selected dosimeter materials exhibit photoconductivity in a useful range, responsive to changes in gamma dose rate. The initial Pyrex glass dosimeter appeared to suffer radiation damage at the relatively high dose rates employed (up to 0.116 Mega rads/hour). Quartz is now being studied as an alternative material.
Journal Article

Effect of Friction Torque on Electromechanical Brake System Dynamics

2017-06-05
2017-01-1902
Actuator and roller screw mechanism are key components of electromechanical brake (EMB) system in automotive and aerospace industry. The inverted planetary roller screw mechanism (IPRSM) is particularly competitive due to its high load-carrying capacity and small assembly size. For such systems, friction characteristic and friction torque generated from rolling/sliding contacts can be an important factor that affects the dynamic performance as well as vibration behavior. This paper investigates the modeling and simulation of the EMB system in early design stage with special attention to friction torque modelling of IPRSM. Firstly, a step-by-step system model development is established, which includes the controller, servo motor, planetary gear train and roller screw mechanism to describe the dynamic behavior of the EMB system.
Technical Paper

Evaluation of Sensors for Noise Path Analysis Testing

1999-05-17
1999-01-1859
Test sensors are evaluated for noise path analysis applications. Newly developed ICP™ piezo-electric strain gages are used with accelerometers and microphones in a conventional noise path analysis test on the front body/suspension attachment points of a vehicle. In a less conventional application, a steering knuckle is converted into a 6-DOF force transducer using an array of strain gages and using an array of 3-DOF load cells. The two sensor arrays are both calibrated with a 6-DOF load cell. The result is an estimate of the three translation force and three moment operating inputs entering the steering knuckle from the wheel.
Technical Paper

Microsensor Fusion Technology for Space Vehicle Reliability Enhancement

1994-04-01
941203
In this work, the goal of enhanced reliability through redundancy is explored. Two levels of fusion have been defined: the first is a fusion of sensors, redundant in both number and type, and the second is a statistical fusion of the resulting data at a software level. An intermediate preprocessing level is required to connect both fusions. The various types of sensors which are included are bulk micromachined flow, pressure and hydrogen sensors and a thin film poly-crystalline silicon temperature sensor. Individual sensors have been fabricated and packaged in arrays. Associated preprocessing has been designed to be able to handle all of the signals coming from each sensor and prepare them for statistical analysis. Data fusion algorithms have been written and tested.
Journal Article

Multi-Point Mesh Modeling and Nonlinear Multi-Body Dynamics of Hypoid Geared System

2013-05-13
2013-01-1895
A multi-point hypoid gear mesh model based on 3-dimensional loaded tooth contact analysis is incorporated into a coupled multi-body dynamic and vibration hypoid gear model to predict more detailed dynamic behavior of each tooth pair. To validate the accuracy of the proposed model, the time-averaged mesh parameters are applied to linear time-invariant (LTI) analysis and the dynamic responses, such as dynamic mesh force, dynamic transmission error, are computed, which demonstrates good agreement with that predicted by single-point mesh model. Furthermore, a nonlinear time-varying (NLTV) dynamic analysis is performed considering the effect of backlash nonlinearity and time-varying mesh parameters, such as mesh stiffness, transmission error, mesh point and line-of-action. Simulation results show that the time history of the mesh parameters and dynamic mesh force for each pair of teeth within a full engagement cycle can be simulated.
Technical Paper

Numerical Flow Analysis of a Centrifugal Compressor with Ported and without Ported Shroud

2014-04-01
2014-01-1655
Turbochargers are commonly used in automotive engines to increase the internal combustion engine performance during off design operation conditions. When used, a most wide operation range for the turbocharger is desired, which is limited on the compressor side by the choke condition and the surge phenomenon. The ported shroud technology is used to extend the operable working range of the compressor, which permits flow disturbances that block the blade passage to escape and stream back through the shroud cavity to the compressor inlet. The impact of this technology on a speed-line at near optimal operation condition and near surge operation condition is investigated. A numerical study investigating the flow-field in a centrifugal compressor of an automotive turbocharger has been performed using Large Eddy Simulation. The wheel rotation is handled by the numerically expensive sliding mesh technique. In this analysis, the full compressor geometry (360 deg) is considered.
Technical Paper

Optical Fiber Coupled Sensors Integrating Optical Waveguides and Micromechanical Structures on Silicon

1994-04-01
941205
Electrically passive optical sensors have been formed using optical waveguides and micromachined-micromechanical structures on silicon substrates. We present recent results on an interferometric pressure sensor where pressure-induced strain in a micromachined diaphragm alters the path length of an optical channel waveguide ring resonator. Pressure is detected as a change in the resonant condition of the ring and found to vary linearly over a range of -100 to 400 kPa with a sensitivity of 0.0094 rad/kPa. Problems with attaching this sensor for testing will be discussed. Our second device is an intensity-type accelerometer utilizing a micromachined cantilever beam. Light transmission across a gap between two channel waveguides, one located on a beam bent by acceleration and another which remains fixed, is measured optically. We show preliminary measurements of the coupling between two closely spaced waveguide sections which agree with overlap integral calculations.
Journal Article

Optimal Pressure Based Detection of Compressor Instabilities Using the Hurst Exponent

2017-03-28
2017-01-1040
The compressor surge line of automotive turbochargers can limit the low-end torque of an engine. In order to determine how close the compressor operates to its surge limit, the Hurst exponent of the pressure signal has recently been proposed as a criterion. The Hurst exponent quantifies the fractal properties of a time series and its long-term memory. This paper evaluates the outcome of applying Hurst exponent based criterion on time-resolved pressure signals, measured simultaneously at different locations in the compression system. Experiments were performed using a truck-sized turbocharger on a cold gas stand at the University of Cincinnati. The pressure sensors were flush-mounted at different circumferential positions at the inlet of the compressor, in the diffuser and volute, as well as downstream of the compressor.
Technical Paper

Practical Aspects of Making NAH Measurements

1999-05-17
1999-01-1847
Practical issues to consider when making measurements for Nearfield Acoustical Holography (NAH) analysis are addressed. These include microphone spacing and placement from the test surface, number of microphones and array size, reference microphone number and placement, and filtering of the data. NAH has become an accepted analysis tool so that several commercial packages are available. Its application is limited to test surfaces that are fairly planar, lending itself well to tire testing, front of dash testing, engine face testing, etc. In order to achieve accurate NAH results, the measurement and analysis process must be clearly understood on a practical level. Understanding the advantages and limitations of NAH and the measurement parameters required of it will allow the user to determine if NAH is applicable to a particular test object and environment.
Technical Paper

Predictive Monitoring and Failure Prevention of Vehicle Electronic Components and Sensor Systems

2006-04-03
2006-01-0373
Vehicle electronics and sensor systems have become indispensable parts in providing safety, comfort, personal communication mobility and many other advanced functions in today's vehicles. As a result, reliability requirements for these critical parts have become extremely important. To meet these requirements, more advanced technologies and tools for degradation monitoring and failure prevention are needed. Currently, the development of diagnostics and prognostics techniques, which employ accurate degradation quantification by appropriate sensor selection, location decision, and feature selection and feature fusion, still remains a vital and unsolved issue. This paper addresses several realistic concerns of failure prevention in vehicle electronics and sensor systems. A unified monitoring and prognostics approach that prevents failures by analyzing degradation features, driven by physics-of-failure, is suggested as a general framework to overcome the unsolved challenge.
Technical Paper

Rev-74-The University of Cincinnati ATV with Independent Suspension

1975-02-01
750143
The history and structure of the Recreational Ecological Vehicle Design Competition, REV-74, is discussed. In this competition, held at Houghton, Mich., several universities designed and constructed all-terrain vehicles which were evaluated in a series of test events. The University of Cincinnati's six-wheeled all-terrain vehicle is described in detail. Features included in the discussion are the vehicle's twin hydrostatic drive transmission, independent suspension, high-frequency muffler, and jet pump drive for water propulsion.
Technical Paper

SSME Parameter Modeling with Neural Networks

1994-04-01
941221
The High Pressure Oxidizer Turbine (HPOT) discharge temperature of the Space Shuttle Main Engine (SSME) was estimated using Radial Basis Function Neural Networks (RBFNN) during the startup transient. Estimation was performed for both nominal engine operation and during simulated input sensor failures. The K-means clustering algorithm was used on the data to determine the location of the basis function centers. The performance of the RBFNN is compared with that of a feedforward neural network trained with the Quickprop learning algorithm.
Technical Paper

Silicon Microsensors for Aerospace Condition Monitoring

1993-04-01
931359
This paper provides several examples of silicon “micromachined” semiconductor sensors with which the authors are involved for aerospace condition monitoring. This and related work in MEMS (Micro Electro Mechanical Systems) has the potential to revolutionize condition monitoring in aerospace condition and “health monitoring” by (1) moving “smart” electronics out to the sensor chip itself and (2) combining a vast quantity and types of, not only electronic, but micromechanical sensing schemes into the silicon chip . Precisely formed cantilevers, gears, valves, microplumbing and even micro motors of the cross-section of a human hair can be fabricated on a single silicon microchip. Silicon is an excellent mechanical material with a yield strength several times that of stainless steel. Also silicon has excellent thermal properties , whereas compatible silicon dioxide (which we typically use in connection with silicon microelectronics patterning) is virtually a thermal insulator.
Technical Paper

Source Identification Using Acoustic Array Techniques

1995-05-01
951360
Acoustic array techniques are presented as alternatives to intensity measurements for source identification in automotive and industrial environments. With an understanding of the advantages and limitations described here for each of the available methods, a technique which is best suited to the application at hand may be selected. The basic theory of array procedures for Nearfield Acoustical Holography, temporal array techniques, and an Inverse Frequency Response Function technique is given. Implementation for various applications is discussed. Experimental evaluation is provided for tire noise identification.
X