Refine Your Search

Topic

Search Results

Technical Paper

A Fitting Algorithm for Determination of Minimum Zone Form Tolerances

1996-05-01
961642
In this paper, a new algorithm, named Nonlinear Optimization Method (NOM) has been mathematically and computationally developed for several geometric elements. The initial condition of the NOM is obtained by LSM, then the minimum zone is optimized in accordance with tolerancing principles in ANSI Y14.5.1M. The results are verified to be the Minimum Zone Evaluation (MZE) for the inspected geometric features. The algorithm, together with its computational realization programs, are proved to be considerably reliable and robust for practical applications.
Technical Paper

A Real-Time Computer System for the Control of Refrigerant Flow

1997-02-24
970108
This paper presents a real-time computer system for the control of refrigerant flow in an automotive air conditioning system. This is an experimental system used to investigate the potential advantages of electronic flow control over conventional flow control (using an orifice tube or thermal expansion valve). Two features of this system are presented. First, the system organization is described. Second, the control and interface software are presented. The emphasis is on the software. The system is organized as a closed loop control system. The inputs to the controller are measurements of the refrigerant system. In particular, thermocouples are used to measure the refrigerant temperature before and after the evaporator. The analog thermocouple signals are converted to digital form by an off-the-shelf, portable, data acquisition system (DAQ). Via a parallel port link, these digital measurements are transfered to a laptop computer.
Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Technical Paper

An Elastoplastic Damage Coupled Analysis for Crashworthiness of Aluminum Materials

1996-02-01
960169
This paper presents a comprehensive damage model capable of predicting crash behavior of aluminum structures under varying applied loading conditions. The damage model has been implemented in a general purpose explicit nonlinear finite element code and crash analysis has been carried out for aluminum tubes. The response obtained from the finite element analysis shows a close agreement with the experimental data. The finite element program containing the proposed generalized damage model can be used to analyze aluminum structures subjected to complex service loading conditions and identify associated failure modes to assess crashworthiness.
Technical Paper

Analysis of Cumulative Damage in a Bumper Due to Multiple Low Speed Impacts

2000-03-06
2000-01-0631
The paper presents a method of analysis based on the theory of damage mechanics to quantify the degree of damage in an engineering structure under load. The method is incorporated into a Ford in-house finite element program called FCRASH that is applied to analyze the cumulative damage in a bumper under multiple low speed impacts. The numerical results calculated at the peak value of the contact force are compared with the test results. The FEA results are used to identify the locations of the hotspot in the bumper system and the predicted location where a potential crack would initiate. The microscopic observations showed damage in the area predicted with the finite element program after the specified number of impacts.
Technical Paper

Behavior of Adhesive Lap Joints in Aluminum Tubes for Crashworthy Structures

2022-03-29
2022-01-0873
Tubular sections are found in many automotive structural components such as front rails, cross beams, and sub-frames. They are also used in other vehicular structures, such as buses and rails. In many of these components, smaller tubular sections may be joined together using an adhesive to build the required structure. For crash safety applications, it is important that the joined tube sections be able to provide high energy absorption capability and withstand the impact load before the adhesive bond failure occurs. In this study, single lap tubular joints between two aluminum tubes are investigated for their crush performance at both quasi-static and high impact speeds using finite element analysis. A crash optimized adhesive Betamate 1496 is considered. The joint parameters, such as adhesive overlap length, tube diameters and tube lengths, are varied to determine their effects on energy absorption, peak and mean loads, and tube deformation mode.
Technical Paper

Correlation between Sensor Performance, Autonomy Performance and Fuel-Efficiency in Semi-Truck Platoons

2021-04-06
2021-01-0064
Semi-trucks, specifically class-8 trucks, have recently become a platform of interest for autonomy systems. Platooning involves multiple trucks following each other in close proximity, with only the lead truck being manually driven and the rest being controlled autonomously. This approach to semi-truck autonomy is easily integrated on existing platforms, reduces delivery times, and reduces greenhouse gas emissions via fuel economy benefits. Level 1 SAE fuel studies were performed on class-8 trucks operating with the Auburn Cooperative Adaptive Cruise Control (CACC) system, and fuel savings up to 10-12% were seen. Enabling platooning autonomy required the use of radar, global positioning systems (GPS), and wireless vehicle-to-vehicle (V2V) communication. Poor measurements and state estimates can lead to incorrect or missing positioning data, which can lead to unnecessary dynamics and finally wasted fuel.
Technical Paper

Crash Performance of Steel, Aluminum and Carbon Fiber Composite Bumper Beams with Steel Crush Cans

2021-04-06
2021-01-0286
In frontal collision of vehicles, the front bumper system is the first structural member that receives the energy of collision. In low speed impacts, the bumper beam and the crush cans that support the bumper beam are designed to protect the engine and the radiator from being damaged, while at high speed impacts, they are required to transfer the energy of impact as uniformly as possible to the front rails that contributes to the occupant protection. The bumper beam material today is mostly steels and aluminum alloys, but carbon fiber composites have the potential to reduce the bumper weight significantly. In this study, crash performance of bumper beams made of a boron steel, aluminum alloy 5182 and a carbon fiber composite with steel crush cans is examined for their maximum deflection, load transfer to crush cans, total energy absorption and failure modes using finite element analysis.
Journal Article

Determining Perceptual Characteristics of Automotive Interior Materials

2009-04-20
2009-01-0017
This paper presents results of a three-phase research project aimed at understanding how future automotive interior materials should be selected or designed to satisfy the needs of the customers. The first project phase involved development of 22 five-point semantic differential scales to measure visual, visual-tactile, and evaluative characteristics of the materials. Some examples of the adjective pairs used to create the semantic differential scales to measure the perceptual characteristics of the material are: a) Visual: Light vs. Dark, Flat vs. Shiny, etc., b) Visual-Tactile: Smooth vs. Rough, Slippery vs. Sticky, Compressive vs. Non-Compressive, Textured vs. Non-Textured, etc., c) Evaluative (overall perception): Dislike vs. Like, Fake vs. Genuine, Cheap vs. Expensive, etc. In the second phase, 12 younger and 12 older drivers were asked to evaluate a number of different automotive interior materials by using the 22 semantic differential scales.
Technical Paper

Driver Workload in an Autonomous Vehicle

2019-04-02
2019-01-0872
As intelligent automated vehicle technologies evolve, there is a greater need to understand and define the role of the human user, whether completely hands-off (L5) or partly hands-on. At all levels of automation, the human occupant may feel anxious or ill-at-ease. This may reflect as higher stress/workload. The study in this paper further refines how perceived workload may be determined based on occupant physiological measures. Because of great variation in individual personalities, age, driving experiences, gender, etc., a generic model applicable to all could not be developed. Rather, individual workload models that used physiological and vehicle measures were developed.
Journal Article

Effect of Temperature Variation on Stresses in Adhesive Joints between Magnesium and Steel

2012-04-16
2012-01-0771
This study considers the thermal stresses in single lap adhesive joints between magnesium and steel. The source of thermal stresses is the large difference in the coefficients of thermal expansion of magnesium and steel. Two different temperature differentials from the ambient conditions (23°C) were considered, namely -30°C and +50°C. Thermal stresses were determined using finite element analysis. In addition to Mg-steel substrate combination, Mg-Mg and steel-steel combinations were also studied. Combined effect of temperature variation and applied load was also explored. It was observed that temperature increase or decrease can cause significant thermal stresses in the adhesive layer and thermal stress distribution in the adhesive layer depends on the substrate combination and the applied load.
Technical Paper

Evaluating the Effect of Two-Stage Turbocharger Configurations on the Perceived Vehicle Acceleration Using Numerical Simulation

2016-04-05
2016-01-1029
Charge boosting strategy plays an essential role in improving the power density of diesel engines while meeting stringent emissions regulations. In downsized two-stage turbocharged engines, turbocharger matching is critical to achieve desired boost pressure while maintaining sufficiently fast transient response. A numerical simulation model is developed to evaluate the effect of two-stage turbocharger configurations on the perceived vehicle acceleration. The simulation model developed in GT-SUITE consists of engine, drivetrain, and vehicle dynamics sub-models. A model-based turbocharger control logic is developed in MATLAB using an analytical compressor model and a mean-value engine model. The components of the two-stage turbocharging system evaluated in this study include a variable geometry turbine in the high-pressure stage, a compressor bypass valve in the low-pressure stage and an electrically assisted turbocharger in the low-pressure stage.
Technical Paper

Formability Analysis of Aluminum-Aluminum and AA5182/Polypropylene/AA5182 Laminates

2023-04-11
2023-01-0731
Owing to their weight saving potential and improved flexural stiffness, metal-polymer-metal sandwich laminates are finding increasing applications in recent years. Increased use of such laminates for automotive body panels and structures requires not only a better understanding of their mechanical behavior, but also their formability characteristics. This study focuses on the formability of a metal–polymer-metal sandwich laminate that consists of AA5182 aluminum alloy as the outer skin layers and polypropylene (PP) as the inner core. The forming limit curves of Al/PP/Al sandwich laminates are determined using finite element simulations of Nakazima test specimens. The numerical model is validated by comparing the simulated results with published experimental results. Strain paths for different specimen widths are recorded.
Technical Paper

Interfacial Fracture in Environmentally Friendly Thermoplastic Composite-Metal Laminates

2006-04-03
2006-01-0117
This paper investigates the interfacial fracture properties of composite-metal laminates by using the single-cantilever beam testing technique. The hybrid systems consisted of a layer of aluminum alloy (6061 or 2024-T3) bonded to polypropylene based composites. In this study, two non-chromate surface treatments were applied to the aluminum substrates: SafeGard CC-300 Chrome free seal (from Sanchem Inc.) and TCP-HF (from Metalast International Inc.). These are environmentally friendly surface treatments that enhance the adhesion and corrosion resistance of aluminum alloys. Flat hybrid panels were manufactured using a one step cold press manufacturing procedure. Single cantilever bend specimens were cut from the panels and tested at 1mm/min. Results have shown that the CC-300 treated Al 2024-T3 alloy and Twintex exhibited higher interfacial fracture energy values.
Journal Article

Measurement and Modeling of Perceived Gear Shift Quality for Automatic Transmission Vehicles

2014-05-09
2014-01-9125
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Technical Paper

Mechanical Response of Composite Reinforced Aluminum Foam Sandwich Systems for Automotive Structures

2007-04-16
2007-01-1722
This paper presents the design and manufacture a sandwich structure bumper beam that could withstand at least the same load required to have plastic deformation in a 2002 Jeep Wrangler bumper beam at a lower weight. The dimensions from a bumper beam were scaled down in order to match the limiting length of the sandwich structure specimens. Theoretical optimization calculations were conducted in order to find the optimal dimensions and face thicknesses for the hybrid structures. Sandwich panels were based on Glass Fiber Reinforced Polypropylene (Twintex) and an Aluminum foam core (Alporas). Three point bending tests were performed on the sandwich structures. The resulting failure modes were revealed and found to be in agreement with those offered by the analytical predictions.
Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

2018-04-03
2018-01-0801
A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Technical Paper

Parametric Approach for Development of an Automotive Bucket Seat Frame

2006-04-03
2006-01-0366
This paper presents a design and development approach for automotive bucket seat frame using a parametric modeling and a finite element analysis methodology. This approach is expected to help build a lightweight seat structure quickly and efficiently. This approach is general, and it can be applied in designing and developing any mechanical structural component. The design process involves, first parametric modeling of the front bucket seat frame using Pro E. This CAD model was then optimized using optimization software called Optistruct, for two cases of load case and boundary condition. The optimized design was then tested for FMVSS seat requirements using LS-DYNA. The dynamic nature of the design approach helps in changing design parameters during different stages of the design process, until the seat structure satisfies the design criteria and the strength requirements. The construction and testing of this design and the design model are still under progress.
Technical Paper

Prediction and Experimental Validation of Path-Dependent Forming Limit Diagrams of VDIF Steel

1998-02-23
980079
Strains in most stamped parts are produced under non-proportional loading. Limit strains induced during forming are, therefore, path dependent. Experimental Forming Limit Diagrams (FLDs) are usually determined under proportional loading and are not applicable to most forming operations. Experimental results have shown that path dependent FLDs are different from those determined under proportional loading. A number of analytical methods have been used to predict FLDs under proportional loading. The authors have recently introduced a new method for predicting FLDs based on the theory of damage mechanics. The damage model was used successfully to predict proportional FLDs for VDIF steel and Al6111-T4. In this paper, the anisotropic damage model was used to predict non-proportional FLDs for VDIF steel. Experiments were conducted to validate model predictions by applying pre-stretch in plane strain followed by uniaxial and balanced biaxial tension.
Technical Paper

Secure and Privacy-Preserving Data Collection Mechanisms for Connected Vehicles

2017-03-28
2017-01-1660
Nowadays, the automotive industry is experiencing the advent of unprecedented applications with connected devices, such as identifying safe users for insurance companies or assessing vehicle health. To enable such applications, driving behavior data are collected from vehicles and provided to third parties (e.g., insurance firms, car sharing businesses, healthcare providers). In the new wave of IoT (Internet of Things), driving statistics and users’ data generated from wearable devices can be exploited to better assess driving behaviors and construct driver models. We propose a framework for securely collecting data from multiple sources (e.g., vehicles and brought-in devices) and integrating them in the cloud to enable next-generation services with guaranteed user privacy protection.
X