Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

A 1D Real-Time Engine Manifold Gas Dynamics Model Using Orthogonal Collocation Coupled with the Method of Characteristics

2019-04-02
2019-01-0190
In this paper, a new solution method is presented to study the effect of wave propagation in engine manifolds, which includes solving one-dimensional models for compressible flow of air. Velocity, pressure, and density profiles are found by solving a system of non-linear Partial Differential Equations (PDEs) in space and time derived from Euler’s equations. The 1D model includes frictional losses, area change, and heat transfer. The solution is traditionally found by utilizing the Method of Characteristics and applying finite difference solutions to the resulting system of ordinary differential equations (ODEs) over a discretized grid. In this work, orthogonal collocation is used to solve the system of ODEs that is defined along the characteristic curves. Orthogonal polynomials are utilized to approximate velocity, pressure, sound speed, and the characteristic curves along which the system of PDEs reduce to a system of ODEs.
Technical Paper

A New Air Hybrid Engine Using Throttle Control

2009-04-20
2009-01-1319
In this work, a new air hybrid engine is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. The concept includes an air tank to store pressurized air during braking and rather than a fully variable valve timing (VVT) system, two throttles are utilized. Use of throttles can significantly reduce the complexity of air hybrid engines. The valves need three fixed timing schedules for the three modes of operation. To study this concept, for each mode, the results of engine simulations using GT-Power software are used to generate the operating maps. These maps show the maximum braking torque as well as maximum air motor torque in terms of air tank pressure and engine speed. Moreover, the resulting maps indicate the operating conditions under which each mode is more effective. Based on these maps, a power management strategy is developed to achieve improved fuel economy.
Technical Paper

A Real-Time Control-Oriented Mean Value Engine Model Including Manifold Gas Dynamics and Engine Thermals with Parameter Identification for a Toyota Prius

2021-04-06
2021-01-0394
A real-time control-oriented mean value engine plant model that includes engine thermals and cold starts is developed for a Toyota Prius 2015 plug-in hybrid engine in Modelica and MapleSim and validated experimentally. The model consists of an engine block model, intake and exhaust manifold models, and a throttle model. An advantage of the engine block model is the ability to compute the frictional Mean Effective Pressure during engine cold starts from calculated air, oil, and coolant temperatures at various locations in the engine block. Traditionally, engine thermals are modelled utilizing thermal resistances and capacitors. The proposed model utilizes linear graph theory with terminal equations to study the topology of the different components that affect engine thermals, including engine head, liner, coolant, and oil sump.
Technical Paper

Advance Noise Path Analysis, A Robust Engine Mount Optimization Tool

2003-10-27
2003-01-3117
Many design problems are discovered often late in the development process, when design flexibility is limited. It is the art of the refinement engineers to find a solution to any unpredicted issues at this stage. The refinement process contains many hours of testing and requires many prototypes. Having an accurate experimental model of the system in this phase could reduce refinement time significantly. One of the areas that usually require refinement and tuning late in the design process is engine and body mounting systems. In this paper, we introduce a technique to optimize the mounting system of a vehicle for a given objective function using experimental/numerical analysis. To obtain an accurate model of the vehicle, we introduce an experimental procedure based upon the substructuring method. The method eliminates the need for any accurate finite element method of the vehicle. Experimental results of the implementation of this approach to a real vehicle are presented.
Technical Paper

An Experimentally Validated Physical Model of a High-Performance Mono-Tube Damper

2002-12-02
2002-01-3337
A mathematical model of a gas-charged mono-tube racing damper is presented. The model includes bleed orifice, piston leakage, and shim stack flows. It also includes models of the floating piston and the stiffness characteristics of the shim stacks. The model is validated with experimental tests on an Ohlins WCJ 22/6 damper and shown to be accurate. The model is exercised to show the effects of tuning on damper performance. The important results of the exercise are 1) the pressure variation on the compression side of the piston is insignificant relative to that on the rebound side because of the gas charge, 2) valve shim stiffness can be successfully modeled using stacked thin circular plates, 3) bleed orifice settings dominate the low speed regime, and 4) shim stack stiffness dominates the high speed regime.
Technical Paper

Considerations for the Application of Magnetorheological Dampers to a Crossover SUV

2008-04-14
2008-01-0347
Magnetorheological (MR) dampers have been used in the market on various vehicles since 2001. They use a special oil-based fluid (Magnetorheological Fluid, MRF) that contains small iron particles (1-10 μm in size) and a controllable electromagnetic piston to allow a wide range of damping forces. The system's wide range of available damping force combined with nearly instantaneous response time helps maximize body control while simultaneously providing outstanding ride comfort. This paper describes how the MR technology was combined with conventional suspension tuning to achieve an enhanced level of dynamic performance. While the MR damper offers enhanced performance, its unique response characteristics require tuning of other hardware components that could be considered to be beyond the normal tuning range for that of a conventional suspension.
Journal Article

Cylinder Head Gasket for High Combustion Pressure Diesel Engines

2009-04-20
2009-01-0993
The pressure of the combustion gas in a diesel engine is higher than that in a gasoline engine, so the cylinder head gasket that seals the combustion chamber is exposed to a severe environment. The sealability of the gaskets is affected not only by the gasket specifications, but also by the cylinder head, cylinder block, and the head bolts that clamp them. Consequently, in order to improve the performance of these gaskets, it is essential to enhance their material characteristics. Because the necessary characteristics of a gasket material are high strength and high fatigue strength, methods of realizing these enhancements were studied, and a new material was developed. It was confirmed that a gasket made using the newly developed material withstood high combustion pressure, and the gasket was used in a high performance diesel engine.
Journal Article

Development of New V6 3.5L Gasoline Engine for ACURA RLX

2013-04-08
2013-01-1728
Honda has developed a new next-generation 3.5 L V6 gasoline engine using our latest Earth Dreams Technology. The overall design objective for the engine was to reduce CO₂ emissions and provide driving exhilaration. The Earth Dreams Technology concept is to increase fuel economy while reducing emissions. To achieve this and provide an exhilarating driving experience, 3-stage Variable Valve Timing and Lift Electronic Control (VTEC) was combined with the Variable Cylinder Management (VCM) system. This valve train technology in conjunction with Direct Injection (DI), resulted in dramatic improvements in output (a 3.3% increase) and combined mode fuel economy (20% reduction). Helping to achieve Midsize Luxury Sedan level NV, a new mount system was developed to reduce engine vibrations during three-cylinder-mode operation. In this paper, we will explain the 3-stage VTEC with VCM + DI system, friction reducing technology, and the structure and benefit of the new engine mount system.
Technical Paper

Engine Knock Toughness Improvement Through Water Jacket Optimization

2003-10-27
2003-01-3259
Improvement of engine cycle thermal efficiency is an effective way to increase engine torque and to reduce fuel consumption simultaneously. However, the extent of the improvement is limited by engine knock, which is more evident at low engine speeds when combustion flame propagation is relatively slow. To prevent engine damage due to knock, the spark ignition timing of a gasoline engine is usually controlled by a knock sensor. Therefore, an engine's ignition timing cannot be set freely to achieve best engine performance and fuel economy. Whether ignition timings for a multi-cylinder engine are the same or can be set differently for each cylinder, it is not desirable for each cylinder has big deviation from the median with respect to knock tendency. It is apparent that effective measures to improve engine knock toughness should address both uniformity of all cylinders of a multi-cylinder engine and improvement of median knock toughness.
Technical Paper

Evaluation of Automobile Fluid Ignition on Hot Surfaces

2007-04-16
2007-01-1394
Automobile fires are a serious concern to manufacturers and consumers. However, understanding how the fires begin, in the confines of the engine compartment, is a difficult task. One known cause of fires is hot surface ignition (HSI) arising when engine fluids contact hot surfaces in the engine compartment or the exhaust train. In this study, the ignition of automotive gasoline on four hot surfaces: stainless and carbon steels from the heat shields, stainless steel from the exhaust manifold and cast iron cut from an intake manifold, was examined in a well-controlled, model study. Infra-red thermography and thermocouples were used to monitor surface temperatures prior to, during and after the fluid impacted the surface. This allowed evaluation and comparison of temperature evolution during fluid impact and the ignition event, resulting in an improved mechanistic understanding of the fluid/hot surface interaction.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Technical Paper

Gaseous Hydrogen Station Test Apparatus: Verification of Hydrogen Dispenser Performance Utilizing Vehicle Representative Test Cylinders

2005-04-11
2005-01-0002
The paper includes the development steps used in creating a station test apparatus (STA) and a description of the apparatus design. The purpose of this device is to simulate hydrogen vehicle conditions for the verification of gaseous hydrogen refueling station dispenser performance targets and hydrogen quality. This is done at the refueling station/vehicle interface (i.e. the refueling nozzle.) In addition, the device is to serve as a means for testing and developing future advanced fueling algorithms and protocols. The device is to be outfitted with vehicle representative container cylinders and sensors located inside and outside the apparatus to monitor refueling rate, ambient and internal gas temperature, pressure and weight of fuel transferred. Data is to be recorded during refueling and graphed automatically.
Technical Paper

Integration of 3D Combustion Simulations and Conjugate Heat Transfer Analysis to Quantitatively Evaluate Component Temperatures

2003-10-27
2003-01-3128
Crucial specifications of an engine are spread widely in various subsystems, such as cooling system, intake and exhaust system, combustion system, etc. Well-informed design decision and optimized design solution cannot be reached without considering interactions among subsystems. Even though significant progresses on CAE technologies have been made to address physical and chemical phenomena in each subsystem, there are few studies in literature to model an engine with a reasonable coverage of subsystems in an integrated fashion. The necessity of such approach is justified from two aspects. Firstly, modifications in one subsystem could result in changes in other subsystems. Secondly, frequently due to experimental constraints or availability of prototypes which is the case for new engine design, boundary conditions for a subsystem of interest can only be obtained from integrated numerical simulations with other subsystems.
Technical Paper

Investigations of Atkinson Cycle Converted from Conventional Otto Cycle Gasoline Engine

2016-04-05
2016-01-0680
Hybrid electric vehicles (HEVs) are considered as the most commercial prospects new energy vehicles. Most HEVs have adopted Atkinson cycle engine as the main drive power. Atkinson cycle engine uses late intake valve closing (LIVC) to reduce pumping losses and compression work in part load operation. It can transform more heat energy to mechanical energy, improve engine thermal efficiency and decrease fuel consumption. In this paper, the investigations of Atkinson cycle converted from conventional Otto cycle gasoline engine have been carried out. First of all, high geometry compression ratio (CR) has been optimized through piston redesign from 10.5 to 13 in order to overcome the intrinsic drawback of Atkinson cycle in that combustion performance deteriorates due to the decline in the effective CR. Then, both intake and exhaust cam profile have been redesigned to meet the requirements of Atkinson cycle engine.
Technical Paper

Material Model Selection for Crankshaft Deep Rolling Process Numerical Simulation

2020-04-14
2020-01-1078
Residual stress prediction arising from manufacturing processes provides paramount information for the fatigue performance assessment of components subjected to cyclic loading. The determination of the material model to be applied in the numerical model should be taken carefully. This study focuses on the estimation of residual stresses generated after deep rolling of cast iron crankshafts. The researched literature on the field employs the available commercial material codes without closer consideration on their reverse loading capacities. To mitigate this gap, a single element model was used to compare potential material models with tensile-compression experiments. The best fit model was then applied to a previously developed crankshaft deep rolling numerical model. In order to confront the simulation outcomes, residual stresses were measured in two directions on real crankshaft specimens that passed through the same modeled deep rolling process.
Technical Paper

Modelling Diesel Engine Natural Gas Injection: Injector/Cylinder Boundary Conditions

1994-03-01
940329
Direct injected natural gas diesel engines are currently being developed. Numerical analyses results are presented for 20.0 MPa (≈ 3000 psia; 200 atm), 444 K, natural gas injection into 4.0 MPa cylinder air where the ambient turbulence field is representative of diesel engines. Two very important non-intuitive, observations are made. First, the seemingly reasonable spatially uniform velocity profile currently used at the injector exit is not appropriate, rather a double-hump profile is correct. Second, a spatially uniform, injector exit, temperature profile results in local temperature overestimates as large as 300 K. Considering the strong role of temperature on chemical kinetics, this second observation may have profound implications on the validity of conclusions reached using uniform exit profiles.
Technical Paper

Parameter Identification of a Quasi-Dimensional Spark-Ignition Engine Combustion Model

2014-04-01
2014-01-0385
Parameter identification of a math-based spark-ignition engine model is studied in this paper. Differential-algebraic equations governing the dynamic behavior of the engine combustion model are derived using a quasi-dimensional modelling scheme. The model is developed based on the two-zone combustion theory with turbulent flame propagation through the combustion chamber [1]. The system of equations includes physics-based equations combined with the semi-empirical Wiebe function. The GT-Power engine simulator software [2], a powerful tool for design and development of engines, is used to extract the reference data for the engine parameter identification. The models is GT-Power are calibrated and validated with experimental results; thus, acquired data from the software can be a reliable reference for engine validation purposes.
Technical Paper

Training Test Drivers with Data Acquisition

2000-11-13
2000-01-3568
Test-driving is a specialized art. Automotive manufactures, parts suppliers, and tire manufacturers employ test drivers to evaluate their products in a variety of circumstances. But Honda and some other firms prefer the automotive engineer test his own product. This gives direct feedback and provides a better “feel” for how the vehicle reacts. It produces a better car and a better engineer. Some Formula One teams send their race engineers to a racing school. Test drivers can be trained at commercial racing schools. These effectively teach students to drive at high speeds near the limit of the vehicle. The test driver must have the skills to perform a test with minimal danger to the driver and the vehicle. But the demands of a test driver are not the same as a racing car driver, though many test drivers also race. The test driver must evaluate the vehicle as well as drive fast. The test driver must faithfully execute a test plan while observing vehicle behavior.
X