Refine Your Search

Topic

Author

Search Results

Technical Paper

A Transient Hydrostatic Dynamometer for Testing Single-Cylinder Prototypes of Multi-Cylinder Engines

2002-03-04
2002-01-0616
A new dynamometer system has been developed to improve the accuracy of tests that are run with a single cylinder version of a multi-cylinder engine. The dynamometer control system calculates the inertial torque and combustion torque that would normally be generated in a multi-cylinder engine. The system then applies the torque from the missing cylinders of the engine with the dynamometer. A unique high bandwidth hydraulic system is utilized to accurately apply these torque pulses. This allows the single-cylinder engine to have the identical instantaneous speed trajectory as the multi-cylinder engine, to test the single-cylinder engine at all engine speeds including very low speed operation, and to now do transient speed and load testing. Not only will this dramatically extend the capabilities of current single-cylinder engine test systems, but may open up new areas of research due to its transient testing capabilities.
Technical Paper

A Visual Investigation of CFD-Predicted In-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets

2019-04-02
2019-01-0543
The long-term goal of this work is to develop a conceptual model for multiple injections of diesel jets. The current work contributes to that effort by performing a detailed modeling investigation into mechanisms that are predicted to control 1st and 2nd stage ignition in single-pulse diesel (n-dodecane) jets under different conditions. One condition produces a jet with negative ignition dwell that is dominated by mixing-controlled heat release, and the other, a jet with positive ignition dwell and dominated by premixed heat release. During 1st stage ignition, fuel is predicted to burn similarly under both conditions; far upstream, gases at the radial-edge of the jet, where gas temperatures are hotter, partially react and reactions continue as gases flow downstream. Once beyond the point of complete fuel evaporation, near-axis gases are no longer cooled by the evaporation process and 1st stage ignition transitions to 2nd stage ignition.
Technical Paper

An Experimental Investigation of In-Cylinder Processes Under Dual-Injection Conditions in a DI Diesel Engine

2004-06-08
2004-01-1843
Fuel-injection schedules that use two injection events per cycle (“dual-injection” approaches) have the potential to simultaneously attenuate engine-out soot and NOx emissions. The extent to which these benefits are due to enhanced mixing, low-temperature combustion modes, altered combustion phasing, or other factors is not fully understood. A traditional single-injection, an early-injection-only, and two dual-injection cases are studied using a suite of imaging diagnostics including spray visualization, natural luminosity imaging, and planar laser-induced fluorescence (PLIF) imaging of nitric oxide (NO). These data, coupled with heat-release and efficiency analyses, are used to enhance understanding of the in-cylinder processes that lead to the observed emissions reductions.
Technical Paper

Application of A Multiple-Step Phenomenological Soot Model to HSDI Diesel Multiple Injection Modeling

2005-04-11
2005-01-0924
Multiple injection strategies have been revealed as an efficient means to reduce diesel engine NOx and soot emissions simultaneously, while maintaining or improving its thermal efficiency. Empirical soot models widely adopted in engine simulations have not been adequately validated to predict soot formation with multiple injections. In this work, a multiple-step phenomenological (MSP) soot model that includes particle inception, surface growth, oxidation, and particle coagulation was revised to better describe the physical processes of soot formation in diesel combustion. It was found that the revised MSP model successfully reproduces measured soot emission dependence on the start-of-injection timing, while the two-step empirical and the original MSP soot models were less accurate. The revised MSP model also predicted reasonable soot and intermediate species spatial profiles within the combustion chamber.
Technical Paper

Application of a Novel White Laser Sensor to an HCCI Engine

2006-04-03
2006-01-1200
A laser-based sensor has been developed which generates short multicolored pulses for use with absorption spectroscopy techniques for the collection of thermodynamic information in an HCCI engine. Our sensor is based on supercontinuum generation which is accomplished by coupling a short-duration, high energy laser pulse (the pump) into fiber optics where colors other than the pump are generated through various nonlinear phenomena. The resulting “white pulse” is then stretched out in time by dispersive media (e.g., another fiber) to a time scale which can be collected by a high speed detector and oscilloscope. Although other multicolored (wavelength agile) laser based techniques generated by scanning mirrors or gratings have been applied to HCCI combustion [1], our supercontinuum approach offers a broad range of wavelengths with both high spectral and high temporal resolution from a source with no moving parts.
Technical Paper

CFD Analysis of Flow Field and Pressure Losses in Carburetor Venturi

2006-11-13
2006-32-0113
A commercial CFD package was used to develop a three-dimensional, fully turbulent model of the compressible flow across a complex-geometry venturi, such as those typically found in small engine carburetors. The results of the CFD simulations were used to understand the effect of the different obstacles in the flow on the overall discharge coefficient and the static pressure at the tip of the fuel tube. It was found that the obstacles located at the converging nozzle of the venturi do not cause significant pressure losses, while those obstacles that create wakes in the flow, such as the fuel tube and throttle plate, are responsible for most of the pressure losses. This result indicated that an overall discharge coefficient can be used to correct the mass flow rate, while a localized correction factor can be determined from three-dimensional CFD simulations in order to calculate the static pressure at locations of interest within the venturi.
Technical Paper

Carburetor Exit Flow Characteristics

1996-08-01
961730
Three different carburetor types have been tested to observe differences in the characteristics of the fuel/air mixtures produced. To characterize the fuel/air mixtures, two diagnostics have been applied: 1) High speed movies and subsequent analysis of the exit flow, and 2) measurement of the A/F ratio found in different positions within the intake manifold. The three different carburetor types that have been studied include a fixed-venturi, fixed-jet butterfly carburetor, a slide-valve carburetor, and a constant-velocity carburetor. Each carburetor type produced a unique set of exit flow characteristics, with differences in the optical density of fuel exiting the carburetor, and differences in the apparent amount of fuel on the intake manifold wall, entrained in the air flow, and in vapor phase.
Technical Paper

Chemiluminescence Measurements of Homogeneous Charge Compression Ignition (HCCI) Combustion

2006-04-03
2006-01-1520
A spectroscopic diagnostic system was designed to study the effects of different engine parameters on the chemiluminescence characteristic of HCCI combustion. The engine parameters studied in this work were intake temperature, fuel delivery method, fueling rate (load), air-fuel ratio, and the effect of partial fuel reforming due to intake charge preheating. At each data point, a set of time-resolved spectra were obtained along with the cylinder pressure and exhaust emissions data. It was determined that different engine parameters affect the ignition timing of HCCI combustion without altering the reaction pathways of the fuel after the combustion has started. The chemiluminescence spectra of HCCI combustion appear as several distinct peaks corresponding to emission from CHO, HCHO, CH, and OH superimposed on top of a CO-O continuum. A strong correlation was found between the chemiluminescence light intensity and the rate of heat release.
Technical Paper

Comparison of the Characteristic Time (CTC), Representative Interactive Flamelet (RIF), and Direct Integration with Detailed Chemistry Combustion Models against Optical Diagnostic Data for Multi-Mode Combustion in a Heavy-Duty DI Diesel Engine

2006-04-03
2006-01-0055
Three different approaches for modeling diesel engine combustion are compared against cylinder pressure, NOx emissions, high-speed soot luminosity imaging, and 2-color thermometry data from a heavy-duty DI diesel engine. A characteristic time combustion (KIVA-CTC) model, a representative interactive flamelet (KIVA-RIF) model, and direct integration using detailed chemistry (KIVA-CHEMKIN) were integrated into the same version of the KIVA-3v computer code. In this way, the computer code provides a common platform for comparing various combustion models. Five different engine operating strategies that are representative of several different combustion regimes were explored in the experiments and model simulations. Two of the strategies produce high-temperature combustion with different ignition delays, while the other three use dilution to achieve low-temperature combustion (LTC), with early, late, or multiple injections.
Journal Article

Dynamic Engine Control for HCCI Combustion

2012-04-16
2012-01-1133
One of the factors preventing widespread use of Homogeneous Charge Compression Ignition or HCCI is the challenge of controlling the process under transient conditions. Current engine control technology does not have the ability to accurately control the individual cylinder states needed for consistent HCCI combustion. The material presented here is a new approach to engine control using a physics-based individual cylinder real time model to calculate the engine states and then controlling the engine with this state information. The model parameters and engine state information calculated within the engine controller can be used to calculate the required actuator positions so that the desired mass of air, fuel, and residual exhaust gas are achieved for each cylinder event. This approach offers a solution to the transient control problem that works with existing sensors and actuators.
Journal Article

Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2008-04-14
2008-01-1330
Low-temperature combustion (LTC) strategies for diesel engines are of increasing interest because of their potential to significantly reduce particulate matter (PM) and nitrogen oxide (NOx) emissions. LTC with late fuel injection further offers the benefit of combustion phasing control because ignition is closely coupled to the fuel injection event. But with a short ignition-delay, fuel jet mixing processes must be rapid to achieve adequate premixing before ignition. In the current study, mixing and pollutant formation of late-injection LTC are studied in a single-cylinder, direct-injection, optically accessible heavy-duty diesel engine using three laser-based imaging diagnostics. Simultaneous planar laser-induced fluorescence of the hydroxyl radical (OH) and combined formaldehyde (H2CO) and polycyclic aromatic hydrocarbons (PAH) are compared with vapor-fuel concentration measurements from a non-combusting condition.
Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

Investigation of Bulk In-Cylinder Stratification with Split Intake Runners

2007-10-29
2007-01-4044
The mixing between the flows introduced through different intake valves of a four-valve engine was investigated optically. Each valve was fed from a different intake system, and the relative sensitivity to different flow parameters (manipulated with the goal of enhancing the bulk in-cylinder stratification) was investigated. Flow manipulation was achieved in three primary ways: modifying the intake runner geometry upstream of the head, introducing flow-directing baffles into the intake port, and attaching flow break-down screens to the intake valves. The relative merits of each flow manipulation method was evaluated using planar laser-induced fluorescence (PLIF) of 3-pentanone, which was introduced to the engine through only one intake valve. Images were acquired from 315° bTDC through 45° bTDC, and the level of in-cylinder stratification was evaluated on an ensemble and cycle-to-cycle basis using a novel column-based probability distribution function (PDF) contour plot.
Technical Paper

Measurements of Gas Temperature in a HCCI Engine Using a Fourier Domain Mode Locking Laser

2006-04-03
2006-01-1366
Initial measurements of water vapor temperature using a Fourier domain mode locking (FDML) laser were performed in a carefully controlled homogenous charge compression ignition engine with optical access. The gas temperature was inferred from water absorption spectra that were measured each 0.25 crank angle degrees (CAD) over a range of 150 CAD. Accuracy was tested in a well controlled shock tube experiment. This paper will validate the potential of this FDML laser in combustion applications.
Technical Paper

Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine

1999-03-01
1999-01-0175
Fuel preparation and stratified combustion were studied for a conceptual gasoline Direct-Injection Spark-Ignition (GDI or DISI) engine by computer simulations. The primary interest was on the effects of different injector orientations and the effects of tumble ratio for late injection cases at a partial load operating condition. A modified KIVA-3V code that includes improved spray breakup and wall impingement and combustion models was used. A new ignition kernel model, called DPIK, was developed to describe the early flame growth process. The model uses Lagrangian marker particles to describe the flame positions. The computational results reveal that spray wall impingement is important and the fuel distribution is controlled by the spray momentum and the combustion chamber shape. The injector orientation significantly influences the fuel stratification pattern, which results in different combustion characteristics.
Technical Paper

Modeling the Effects of Late Cycle Oxygen Enrichment on Diesel Engine Combustion and Emissions

2002-03-04
2002-01-1158
A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NOx emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NOx emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NOx through controlled enhancement of in-cylinder mixing.
Technical Paper

Multi-Dimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays

1998-02-23
980132
To help account for fuel distribution during combustion in diesel engines, a fuel film model has been developed and implemented into the KIVA-II code [1]. Spray-wall interaction and spray-film interaction are also incorporated into the model. Modified wall functions for evaporating, wavy films are developed and tested. The model simulates thin fuel film flow on solid surfaces of arbitrary configuration. This is achieved by solving the continuity, momentum and energy equations for the two dimensional film that flows over a three dimensional surface. The major physical effects considered in the model include mass and momentum contributions to the film due to spray drop impingement, splashing effects, various shear forces, piston acceleration, dynamic pressure effects, and convective heat and mass transfer.
Technical Paper

Multidimensional Simulation of PCCI Combustion Using Gasoline and Dual-Fuel Direct Injection with Detailed Chemical Kinetics

2007-04-16
2007-01-0190
Homogeneous or partially premixed charge compression ignition combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, since it is difficult to control the start of combustion timing, direct injection of fuel into the combustion chamber is often used for combustion phasing control, as well as charge preparation. In this paper, numerical simulations of compression ignition processes using gasoline fuel directly injected using a low pressure, hollow cone injector are presented. The multi-dimensional CFD code, KIVA3V, that incorporates various advanced sub-models and is coupled with CHEMKIN for modeling detailed chemistry, was used for the study. Simulation results of the spray behavior at various injection conditions were validated with available experimental data.
Technical Paper

Multidimensional Simulation of the Influence of Fuel Mixture Composition and Injection Timing in Gasoline-Diesel Dual-Fuel Applications

2008-04-14
2008-01-0031
Homogeneous charge compression ignition (HCCI) combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, there are several difficulties that must be overcome for HCCI practical use, such as difficult ignition timing controllability. Indeed, too early or too late ignition can occur with obvious drawbacks. In addition, the increase in cyclic variation caused by the ignition timing uncertainty can lead to uneven engine operation. As a way to solve the combustion phasing control problem, dual-fuel combustion has been proposed. It consists of a diesel pilot injection used to ignite a pre-mixture of gasoline (or other high octane fuel) and air. Although dual-fuel combustion is an attractive way to achieve controllable HCCI operation, few studies are available to help the understanding of its in-cylinder combustion behavior.
X