Refine Your Search

Topic

Search Results

Technical Paper

A Comparative Study on Machinability Characteristics in Dry Machining of Inconel X-750 Alloy Using Coated Carbide Inserts

2018-07-09
2018-28-0031
Nickel based superalloys have a wide range of applications due to high mechanical strength at high temperatures, fracture toughness and resistance to corrosion. However, because of their outstanding properties, it is considered as the difficult to machine materials. Inconel alloy X-750 is used extensively in rocket-engine thrust chambers. Airframe applications include thrust reversers and hot-air ducting systems along with large pressure vessels are formed from Inconel alloy X-750. Moreover, the comparative analysis of machinability aspect using coated carbide inserts is reported few. The current study explains the machinability investigation on Inconel alloy X-750 superalloys using coated carbides. To collect the experimental data, the L16 experimental design plan is used to experiment with a machining length of 40 mm.
Technical Paper

A Comparative Tribological Performance of Lubricating Oils with Zinc Dialkyl Dithiophosphate and Zinc Oxide Nanoparticles as Additives

2019-10-11
2019-28-0174
The present work compares the tribological properties of ZnO (Zinc Oxide) nanoparticle based lubricant with ZDDP (zinc dialkyl dithiophosphate) based lubricant. The nanolubricant was prepared by mixing the nanoparticles in base oil followed by ultrasonification and ZDDP based lubricant was prepared by mixing ZDDP and stirring with base oil. Base oil used was mineral base oil. Both the lubricants were tested at three different temperatures, loads and roughness values. The test was carried out on AISI 52100 steel samples prepared by wire cutting and were grinded to three different levels of surface roughness. Friction and wear tests were performed using a reciprocating sliding tribo-tester at three different loads and temperatures. Taguchi orthogonal array was used to reduce the number of experiments. SEM, EDS and AFM analysis were carried out to study the surface wear phenomenon.
Technical Paper

A Study on the Turning Characteristics and Optimization of MOS2p and SiCp-Reinforced Al-Si10Mg Metal Matrix Composites

2018-07-09
2018-28-0043
In the fabrication of parts in auto and aero segments, the use of ceramic (SiCp, Al2O3p) reinforces aluminum alloy found to be increased than that of steel and cast iron. This matrix-reinforced alloy has a high strength to weight ratio along with higher modulus and hardness, the lower thermal coefficient of expansion, and improved tribological properties. To this extent, this paper investigates the turning characteristics and optimization study of newly developed metal matrix composites by the addition of both hard ceramic SiCp and soft stable lubricant molybdenum disulfide (MoS2p). The samples such as Sample 1: AlSi10Mg/3SiCp, Sample 2: AlSi10Mg/2MoS2p and Sample 3: AlSi10Mg/3SiCp /2MoS2p are prepared using the automated stir-casting machine. The particles are observed to be uniformly distributed in the composite. After density and hardness measurement, the samples are subjected to machining, and the responses are optimized by using response surface method.
Technical Paper

Corrosion Characteristics on Friction Stir Welding of Dissimilar AA2014/AA6061 Alloy for Automobile Application

2019-10-11
2019-28-0063
Friction Stir Welding (FSW) is a widely used solid state welding process in which its heats metal to the below recrystallization temperature due to frictional force. FSW mostly avoids welding defects like hot cracking and porosity which are mainly occur in conventional welding techniques. In this process the combination of frictional force and the mechanical work provide heating the base metal to get defect free weld joints. Aluminium Alloys 2014 and 6061 are generally used in a wide range of automobile applications like Engine valves and tie rod, shipbuilding, and aerospace due to their high corrosion resistance, lightweight, and good mechanical properties. In the present work, aluminium alloys of AA6061 and AA2014 were effectively welded by friction stir welding technique. The tool rotational speed, travel speed, and tool profile are the important parameters in FSW process. High Speed Steel (HSS) tool with Hexagonal profile is used for this joining.
Technical Paper

Design Optimization of an Epoxy Carbon Prepreg Drive Shaft and Design of a Hybrid Aluminium 6061-T6 Alloy/Epoxy Carbon Prepreg Drive Shaft

2018-07-09
2018-28-0014
Epoxy carbon fiber composite materials are known for their light weight and high performance. They can be effective substitutes for commonly used materials for making drive shafts. Fiber orientation angle plays a major role in determining such a drive shaft’s responses. The responses considered in this paper are critical buckling torque, fundamental natural frequency and total deformation. A drive shaft made of epoxy carbon unidirectional prepreg is generated using ANSYS 18.0 ACP Composite Prepost. The objective of this paper is to determine an optimal configuration of fiber orientation angles for four, five and six-layered epoxy carbon drive shaft which tends to increase critical buckling torque and fundamental natural frequency while decreasing the total deformation. The optimal configuration which satisfies this objective for the three responses is identified by Minitab 17 statistical software.
Technical Paper

Design and Fabrication of Carbon Fibre/Epoxy-Aluminum Hybrid Suspension Control Arms for Formula SAE Race Cars

2020-04-14
2020-01-0230
Suspension system of a vehicle plays an important role to carefully control motion of the wheel throughout the travel. The vertical and the lateral dynamics (ride and handling) is affected by the unsprung-to-sprung mass ratio. Lower value of this mass ratio leads to enhanced performance of the car. To optimize the unsprung mass of the car, design of control arm plate is optimized with Aluminum material and Carbon fibre reinforced composite control arms framework are used to achieve high stiffness to weight ratio. These leads to increase in overall power to weight ratio of the car which helps to deliver maximum performance to the wheels. Through analysis of real-life working conditions of the entire steering knuckle assembly in ACP pre- post ANSYS 18.1 with the defined boundary conditions, equivalent stress and total deformations are obtained. Based on the results, geometrical topology of the control arms plates is further optimized.
Technical Paper

Empirical and Artificial Neural Network Modeling of Laser Assisted Hybrid Machining Parameters of Inconel 718 Alloy

2018-07-09
2018-28-0023
In the present paper, to predict the process relation between laser-assisted machining parameters and machinability characteristics, statistical models are formulated by employing surface response methodology along with artificial neural network. Machining parameters such as speed of cut; the rate of feed; along with the power of laser are taken as model input variables. For developing confidence limit in collected raw experimental data, the full factorial experimental design was applied to cutting force; surface roughness; along with flank wear. Response surface method (RSM) with the least square method is used to develop the theoretical equation. Furthermore, artificial neural network method has been done to model the laser-assisted machining process. Then, both the models (RSM and ANN) are compared for accuracy regarding root mean square error (RMSE); model predicted error (MPE) along with the coefficient of determination (R2).
Technical Paper

Experimental Investigation on Turning Characteristics of TiC/MoS2 Nanoparticles Reinforced Al7075 Using TiN Coated Cutting Tool

2019-10-11
2019-28-0165
In recent years, aluminum metal matrix composites (Al-MMC) are found as a potential material for numerous applications owing to its excellent tribological and mechanical properties. In this work, the machining characteristics of aluminum alloy (Al7075) reinforced with TiC/MoS2 having nanoparticle has been studied. The samples of aluminum metal matrix composites by varying TiC in 0, 2 and 4 and MoS2 in 0 and 2 of the percentage weight of aluminum alloy (Composite 1(Al7075), Composite 2 (Al7075/2TiC/2MoS2) and composite 3 (Al7075/4TiC/2MoS2), respectively) are fabricated by the stir-casing method. The turning characteristics of the developed metal matrix composites are studied at various parameters such as cutting velocity (30 m/min, 60 m/min and 90 m/min), cutting depth (0.5 mm, 1.0 mm and 1.5 mm) and composites (1, 2 and 3) using TiN coated cutting tool by dry turning at 0.05 mm/rev feed rate.
Technical Paper

Experimental Investigation on the Mechanical Properties of Date Seed and Neem Gum Powder Added Natural Composites

2024-02-23
2023-01-5150
The experimental investigation aims to improve natural composite materials aligned with feasible development principles. These composites can be exploited across several industries, including the automobile and biomedical sectors. This research employs date seed powder and neem gum powder as reinforcing agents, along with polyester resin as the base material. The fabrication route comprises compression moulding, causing the production of the natural composite material. This study focuses extensively on mechanical characteristics such as tensile strength, flexural strength, hardness, and impact resistance to undergo comprehensive testing. Furthermore, the chemical properties of the composites are examined using the FTIR test to gain understanding by integrating different proportions of date seed powder (5%, 10%, 15%, and 20%) and neem gum powder (0%, 3%, 6%, and 9%) in the matrix phase.
Technical Paper

Experimental Study on Tool Wear and Cutting Temperature during Machining of Nimonic C-263 and Waspaloy Based on Taguchi Method and Response Surface Methodology

2019-10-11
2019-28-0144
Nickel based materials of Nimonic C-263 and Waspaloy are used nowadays for aerospace applications owing to its superior strength properties that are maintained at a higher temperature. Tool wear and cutting temperature in the vicinity of cutting edge are two essential machinability characteristics for any cutting tool. In this regard, this study is pursued to examine the influence of factors on measuring of tool wear (Vba) and cutting temperature (Ts) during dry machining of two alloys studied experimentally based on Taguchi method and response surface methodology. Taguchi’s L16 orthogonal array is used to design the experiment and a PVD (TiAlN), CVD (TiN/Al2O3/TiCN) coated carbide inserts are used on turning of two alloys. The factor effect on output responses are studied using analysis of variance, empirical models, and responses surface 3D plots. To minimize the response and to convert into one single optimum level, responses surface desirability function approach is applied.
Technical Paper

Fabrication and Machinability Study of Al2219 Metal Matrix Composites Reinforced with SiN/MoS2 Nanoparticles

2019-10-11
2019-28-0170
Composites materials are substituting constituents for traditional materials due to their remarkable properties, and the addition of nanoparticles gives a new development in the material domain. The nanoparticles influence on fabrication and machinability investigation study is essential as the composites to be used in applications like automotive and aerospace. The current study investigates the machinability characteristics of Al2219 based metal composites reinforced with nanoparticles of SiN/MoS2. Al2219- reinforcements (SiN and MoS2) composites are fabricated by the method of stir casting. Four different compositions (Al2219/SiN (2 wt% and 4 wt%), , Al2219/2 wt.% SiN/ 2 wt.% MoS2, Al2219/2 wt.% MoS2) are fabricated by varying the different weight percentages of nanoparticles reinforcements. An attempt is made to study the investigation analysis of force, surface roughness, and tool wear using CNC machine lathe to consider the effect of cutting speed, cutting depth, and samples.
Technical Paper

Influence of Various Parameters of Turning Low Carbon Steel with M2 HSS Tool Using Minimum Quantity Lubrication

2022-12-23
2022-28-0533
Turning is a widely used manufacturing process in mechanical machining industries, while the cost associated with this process is high due to the cost involved in changing tools or tool regrinding. All the parameters of turning, like feed rate, cutting speed, and depth of cut, substantially impact the tool wear, which subsequently reduces tool life. Cooling methods like flooding, Minimum Quantity Lubrication (MQL), etc., are incorporated to minimise these effects on the tool and workpiece interface. When using these cooling techniques, the process parameters involved play vital roles in increasing the effectiveness. This paper focuses on the effects of machining parameters on the tool and the workpiece quality. Experiments were conducted to study the impact of various input parameters of the turning process on the tool tip temperature, cutting forces, and tool wear, ultimately affecting the tool's life.
Technical Paper

Investigation of Machinability Characteristics and Chip Morphology on Inconel 718: Dry and MQL

2019-10-11
2019-28-0066
Inconel 718 has excellent material properties, corrosion, and oxidation property among the nickel based superalloy. This property makes it suitable for producing components operating under extreme environments subjected to pressure and heat. The present study aims to examine the machinability comparison under dry and MQL turning of Inconel 718. The secondary aim is to report the sustainable machining on Inconel 718. Dry and MQL (Minimum Quantity Lubrication) experiments are carried out on Inconel 718 alloy based on Taguchi’s designed L16 orthogonal array. The cutting tools are an advanced coated cutting tool and uncoated tool. The levels of turning parameters are varied at 70, 120, 170 and 220 m/min of turning speed, 0.1, 0.15, 0.2 and 0.25 mm/rev of feed rate and 0.3, 0.4, 0.5 and 0.6 mm of cutting depth. The cutting forces, surface roughness, flank wear, and chip morphology are taken for the current investigation. The factor effect on output responses is studied using 2D plots.
Technical Paper

Investigation of Machinability Characteristics on Turning of Nimonic 90A Using Al2O3 and CNT Nanoparticle in Groundnut Oil

2019-10-11
2019-28-0072
Nimonic 90A alloy is a nickel-chromium-cobalt alloy and found as a potential material for turbine blades, discs, forgings, a ring section, and hot-working tools. This paper presents the effect of concentration along with cutting speed and feed rate on Fz: cutting force, Ra: surface roughness and Vba: tool wear with the application of two different nanofluids (NFS) on turning of Nimonic 90A by TiAlN PVD carbide cutting inserts. The nanoparticles suspended in oil taken for present investigation are nAl2O3, nCNT, and groundnut oil. The Taguchi L9 orthogonal array and derringer’s desirability response surface has been employed for parameter design and optimal search. 3D surface plots, factor effect plots, Taguchi S/N, and variance tests are used to study the effect of concentration on the machining performance of Nimonic 90A. The statistical analysis revealed % concentration for nCNT and cutting speed for nAl2O3 are found as an influenced parameter on performance characteristics.
Technical Paper

Investigation of Metallurgical and Mechanical Properties of Hastelloy X by Key-Hole Plasma Arc Welding Process

2019-10-11
2019-28-0152
This research work describes the effect of microsegregation, microstructure and tensile strength of the Hastelloy X weldment produced by keyhole plasma arc welding (K-PAW). Weld joint was obtained in a single pass without the addition of filler wire. The significant results obtained in this research work are (i) fine equiaxed dendrite was detected in the weld centre due to lesser heat input (HI) along with the faster solidification attained in K-PAW (ii) The existence of secondary precipitates in the interdendritic boundary was identified by the scanning electron microscope (SEM) analysis (iii) Energy dispersive X-ray spectroscope (EDS) revealed the Cr and Mo microsegregation in interdendritic boundary of the weld zone (iv) X-ray diffraction (XRD) analysis confirmed the Mo-rich P phase and Cr-rich M23C6 phase. The observed tensile strength of weldment is 6.14 % inferior to base metal.
Technical Paper

Investigation of Natural Fiber Composite in EMI Shielding under the Influence of Hematite and Rice Husk Ash Filler

2022-12-23
2022-28-0588
The increased use of electronic systems has become a severe concern for electromagnetic pollution, leading to the development of materials to reduce electromagnetic interference (EMI). The present study investigated the EMI-shielding effectiveness (EMI-SE) of flax fiber polymer composite (FFC) in the available free space method by varying the wt.% of Rice husk ash (RHA) and hematite. The flax fiber was coated with the dip coating technique, and the coated fibers were used for preparing FFC by hand layup. The EMI-SE was measured at 32-33.5 dB in the X-band frequency range (8-12 GHz). As the cost is low and can be mass-produced, results show that the developed FFC are suitable for electric vehicle applications specifically to shield Electronic control units (ECU), where the interference effect needs to be reduced.
Technical Paper

Investigation on Microstructure and Mechanical Properties of Corrosion Resistance Alloy C-2000 Fabricated by Conventional Arc Welding Technique

2019-10-11
2019-28-0177
In the current work the metallurgical and tensile properties of the weld joints of alloy C-2000 were investigated. Welding technique employed in this study is Tungsten Inert Gas Welding (TIG) and Pulsed Current Tungsten Inert Gas (PC-TIG) welding with autogenous mode and Ni-Cr-Mo rich ERNiCrMo-10 filler wire. The results show that PC-TIG weldment obtained the refined microstructure compared to the TIG weldment. Energy dispersive spectroscopy (EDS) showed the extent of Cr segregation was observed in all the weldments. PC-TIG welding shows reduced segregation compared to the corresponding TIG. X-ray diffraction (XRD) corroborated the existence of Ni3Cr2 phases in the weld fusion zone. Tensile test results show the PC-TIG weldment obtained marginally higher tensile properties comparing over the corresponding TIG weldment. The strength of the weldments is inferior in all cases in comparison to base metal.
Technical Paper

Investigations on Dimensional Analysis of Fused Filament Fabrication of Wax Filament by Taguchi Design

2019-10-11
2019-28-0133
Experimental investigations were carried out on the machinable wax filament using the fused deposition modelling (FDM) rapid prototyping process. The printer used for conducting the experiments was Flash Forge guider 2. The filament material used for this study was machinable wax filament of 1.75 mm diameter. Experimental trials were carried out as per Taguchi L9 orthogonal array to determine the optimum process parameter combination. The dimensional analysis of test samples were carried out in terms of change in volume of samples which is result of combine effect of deviations in all the dimensions of test sample. Four factors each at three levels was used to obtain the optimum printing parameters for better dimensional accuracy and proper printing. The four important printing parameters were taken as factor and set to analyse the significant factor affecting on printing. The complexity in printing of wax filament is taken in to consideration during the experimental study.
Technical Paper

Machinability and Parametric Optimization of Inconel 600 Using Taguchi-Desirability Analysis under Dry Environment

2019-10-11
2019-28-0068
Inconel 600 is a face-centered cubic structure and nickel-chromium alloy. Alloy 600 has good resistance to oxidation, corrosion-resistant, excellent mechanical properties, and good creep rupture strength at a higher temperature. Alloy 600 is used in heat treating, phenol condensers, chemical and food processing, soap manufacture, vegetable, and fatty acid vessels. In this context, the present paper investigates the machinability characteristics of Alloy 600 under dry environment. Also, the parametric effect of cutting speed, feed rate, and cutting depth on the force, surface roughness, and tool wear is carried out using 3-Dimensional surface and 1-Dimensional plots. The optimal parameters are determined systematically based on Taguchi-desirability analysis with turned with TiAlN coated carbide insert. From the graphical analysis of collected data, the low rate of feed and moderate cutting for roughness and cutting force and average feed rate for tool wear with low cutting depth.
Technical Paper

Mechanical and Corrosion Behaviour of Al 7075 Composite Reinforced with TiC and Al2O3 Particles

2019-10-11
2019-28-0094
Various research regarding new types of fabrication and modifications of Aluminium alloy to improve the existing properties are going on. The wide range application of aluminium alloy is in aerospace and Automobile Industries. The demand for this material improved by mechanical properties with little to zero increment in weight. The current work is based on the fabrication of hybrid aluminium metal matrix composites with the addition of TiC (Titanium Carbide) and Al2O3 (Aluminium Oxide) reinforcement particle using stir casting technique. Three types of hybrid composite samples were prepared based on the weight percentage 5% Al2O3+0% TiC (sample-1), 8% Al2O3 + 12% TiC (sample-2), 20% Al2O3+15% TiC (sample-3). The objective of the study is to analyze the mechanical and corrosion properties of the hybrid composite with the influence of the reinforcement and varying the weight fraction of the particles.
X