Refine Your Search

Topic

Author

Search Results

Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Journal Article

A New Semi-Empirical Method for Estimating Tire Combined Slip Forces and Moments during Handling Maneuvers

2015-07-01
2015-01-9112
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
Journal Article

Admissible Shape Parameters for a Planar Quasi-Static Constraint Mode Tire Model

2017-08-17
2017-01-9683
Computationally efficient tire models are needed to meet the timing and accuracy demands of the iterative vehicle design process. Axisymmetric, circumferentially isotropic, planar, discretized models defined by their quasi-static constraint modes have been proposed that are parameterized by a single stiffness parameter and two shape parameters. These models predict the deformed shape independently from the overall tire stiffness and the forces acting on the tire, but the parameterization of these models is not well defined. This work develops an admissible domain of the shape parameters based on the deformation limitations of a physical tire, such that the tire stiffness properties cannot be negative, the deformed shape of the tire under quasi-static loading cannot be dominated by a single harmonic, and the low spatial frequency components must contribute more than higher frequency components to the overall tire shape.
Technical Paper

An Adaptive Vehicle Stability Control Algorithm Based on Tire Slip-Angle Estimation

2012-09-24
2012-01-2016
Active safety systems have become an essential part of today's vehicles including SUVs and LTVs. Although they have advanced in many aspects, there are still many areas that they can be improved. Especially being able to obtain information about tire-vehicle states (e.g. tire slip-ratio, tire slip-angle, tire forces, tire-road friction coefficient), would be significant due to the key role tires play in providing directional stability and control. This paper first presents the implementation strategy for a dynamic tire slip-angle estimation methodology using a combination of a tire based sensor and an observer system. The observer utilizes two schemes, first of which employs a Sliding Mode Observer to obtain lateral and longitudinal tire forces. The second step then utilizes the force information and outputs the tire slip-angle using a Luenberger observer and linearized tire model equations.
Technical Paper

An Artificial Neural Network Model to Predict Tread Pattern-Related Tire Noise

2017-06-05
2017-01-1904
Tire-pavement interaction noise (TPIN) is a dominant source for passenger cars and trucks above 40 km/h and 70 km/h, respectively. TPIN is mainly generated from the interaction between the tire and the pavement. In this paper, twenty-two passenger car radial (PCR) tires of the same size (16 in. radius) but with different tread patterns were tested on a non-porous asphalt pavement. For each tire, the noise data were collected using an on-board sound intensity (OBSI) system at five speeds in the range from 45 to 65 mph (from 72 to 105 km/h). The OBSI system used an optical sensor to record a once-per-revolution signal to monitor the vehicle speed. This signal was also used to perform order tracking analysis to break down the total tire noise into two components: tread pattern-related noise and non-tread pattern-related noise.
Technical Paper

An Extended-Range Electric Vehicle Control Strategy for Reducing Petroleum Energy Use and Well-to-Wheel Greenhouse Gas Emissions

2011-04-12
2011-01-0915
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2008 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Laboratory (ANL) and sponsored by General Motors (GM) and the U.S. Department of Energy (DoE). Following GM's vehicle development process, HEVT established goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in, range-extended hybrid electric vehicle. The challenge involves designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use and well-to-wheels (WTW) greenhouse gas (GHG) emissions. In order to interface with and control the vehicle, the team added a National Instruments (NI) CompactRIO (cRIO) to act as a hybrid vehicle supervisory controller (HVSC).
Journal Article

Anthropomimetic Traction Control: Quarter Car Model

2011-09-13
2011-01-2178
Human expert drivers have the unique ability to combine correlated sensory inputs with repetitive learning to build complex perceptive models of the vehicle dynamics as well as certain key aspects of the tire-ground interface. This ability offers significant advantages for navigating a vehicle through the spatial and temporal uncertainties in a given environment. Conventional traction control algorithms utilize measurements of wheel slip to help insure that the wheels do not enter into an excessive slip condition such as burnout. This approach sacrifices peak performance to ensure that the slip limits are generic enough suck that burnout is avoided on a variety of surfaces: dry pavement, wet pavement, snow, gravel, etc. In this paper, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy.
Technical Paper

Assessment of High-Temperature Encapsulants for Planar Packages

2010-11-02
2010-01-1729
Seven encapsulants with operating temperatures up to 250°C were surveyed for use in planar packages for wide-bandgap dice. Two of the encapsulants failed processability test because they were not able to flow, and another two failed because they induced voids or cracks after curing. The dielectric results of the remaining three encapsulants showed that both dielectric strength and permittivity decreased almost 40% when the temperature was increased up to 250°C. As the three encapsulants were used to encapsulate a power module, it was proven that all of them could protect the package from early breakdown caused by the poor dielectric strength of air.
Technical Paper

CALVIN: Winner of the Fourth Annual Unmanned Ground Vehicle Design Competition

1997-02-24
970174
The Unmanned Ground Vehicle Competition is jointly sponsored by the SAE, the Association for Unmanned Vehicle Systems (AUVS), and Oakland University. College teams, composed of both undergraduate and graduate students, build autonomous vehicles that compete by navigating a 139 meter outdoor obstacle course. The course, which includes a sand pit and a ramp, is defined by painted continuous or dashed boundary lines on grass and pavement. The obstacles are arbitrarily placed, multi-colored plastic-wrapped hay bales. The vehicles must be between 0.9 and 2.7 meters long and less than 1.5 meters wide. They must be either electric-motor or combustion-engine driven and must carry a 9 kilogram payload. All computational power, sensing and control equipment must be carried on board the vehicle. The technologies employed are applicable in Intelligent Transportation Systems (ITS).
Journal Article

Characterization of Lane Departure Crashes Using Event Data Recorders Extracted from Real-World Collisions

2013-04-08
2013-01-0730
Lane Departure Warning (LDW) is a production active safety system that can warn drivers of an unintended departure. Critical in the design of LDW and other departure countermeasures is understanding pre-crash driver behavior in crashes. The objective of this study was to gain insight into pre-crash driver behavior in departure crashes using Event Data Recorders (EDRs). EDRs are units equipped on many passenger vehicles that are able to store vehicle data, including pre-crash data in many cases. This study used 256 EDRs that were downloaded from GM vehicles involved in real-world lane departure collisions. The crashes were investigated as part of the NHTSA's NASS/CDS database years 2000 to 2011. Nearly half of drivers (47%) made little or no change to their vehicle speed prior to the collision and slightly fewer decreased their speed (43%). Drivers who did not change speed were older (median age 41) compared to those who decreased speed (median age 27).
Technical Paper

Design of an All-Revolute, Linkage-Type, Constant-Velocity Coupling

1995-09-01
952133
This paper describes a design methodology for a three degree-of-freedom, linkage-based constant-velocity coupling. This coupling resembles the Clemens coupling patented in 1872 and has evolved from the authors' previous research in parallel mechanisms. This coupling contains only revolute joints and is therefore likely to be more durable and less prone to manufacturing errors than conventional higher-pair couplings. The kinematic configuration, based on the symmetric double octahedral Variable Geometry Truss mechanism (figure 2), has many inherent traits that make it ideal for application to industrial uses. Its parallel design of simple links and revolute joints provide it with high strength, rigidity, and light-weight characteristics. It has a link-joint construction that allows its geometry to be varied for specific applications, such as producing high angular deflection between the input and output shafts.
Technical Paper

Developing a Compact Continuous-State Markov Chain for Terrain Road Profiles

2013-04-08
2013-01-0629
Accurate terrain models provide the chassis designer with a powerful tool to make informed design decisions early in the design process. It is beneficial to characterize the terrain as a stochastic process, allowing limitless amounts of synthetic terrain to be created from a small number of parameters. A continuous-state Markov chain is proposed as an alternative to the traditional discrete-state chain currently used in terrain modeling practice. For discrete-state chains, the profile transitions are quantized then characterized by a transition matrix (with many values). In contrast, the transition function of a continuous-state chain represents the probability density of transitioning between any two states in the continuum of terrain heights. The transition function developed in this work uses a location-scale distribution with polynomials modeling the parameters as functions of the current state.
Technical Paper

Developing a Methodology to Synthesize Terrain Profiles and Evaluate their Statistical Properties

2011-04-12
2011-01-0182
The accuracy of computer-based ground vehicle durability and ride quality simulations depends on accurate representation of road surface topology as vehicle excitation data since most of the excitation exerted on a vehicle as it traverses terrain is provided by the terrain topology. It is currently not efficient to obtain accurate terrain profile data of sufficient length to simulate the vehicle being driven over long distances. Hence, durability and ride quality evaluations of a vehicle depend mostly on data collected from physical tests. Such tests are both time consuming and expensive, and can only be performed near the end of a vehicle's design cycle. This paper covers the development of a methodology to synthesize terrain profile data based on the statistical analysis of physically measured terrain profile data.
Technical Paper

Development and Validation of an E85 Split Parallel E-REV

2011-04-12
2011-01-0912
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended-range hybrid electric vehicle. The competition requires participating teams to improve and redesign a stock Vue XE donated by GM. The result of this design process is an Extended-Range Electric Vehicle (E-REV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design is predicted to achieve an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an estimated all electric range of 69 km (43 miles) [1].
Technical Paper

Development of Auditory Warning Signals for Mitigating Heavy Truck Rear-End Crashes

2010-10-05
2010-01-2019
Rear-end crashes involving heavy trucks occur with sufficient frequency that they are a cause of concern within regulatory agencies. In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks which resulted in 135 fatalities. As part of the Federal Motor Carrier Safety Administration's (FMCSA) goal of reducing the overall number of truck crashes, the Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Researchers also utilized what had been learned in the rear-end crash avoidance work with light vehicles that was conducted by the National Highway Traffic Safety Administration (NHTSA) with Virginia Tech Transportation Institute (VTTI) serving as the prime research organization. ERS crash countermeasures investigated included passive conspicuity markings, visual signals, and auditory signals.
Technical Paper

Development of a Multi-Disciplinary Optimization Framework for Nonconventional Aircraft Configurations in PACELAB APD

2015-09-15
2015-01-2564
1 Most traditional methods and equations for estimating the structural and nonstructural weights and aerodynamics used at the aircraft conceptual design phase are empirical relations developed for conventional tube-and-wing aircraft. In a computation-heavy design process, such as Multidisciplinary Design and Optimization (MDO) simplicity of calculation is paramount, and for conventional configurations the aforementioned approaches work well enough for conceptual design. But, for non-traditional designs such as strut-braced winged aircraft, empirical data is generally not available and the usual methods can no longer apply. One solution to this is a movement toward generalized physics-based methods that can apply equally well to conventional or non-traditional configurations.
Technical Paper

Development of a Willans Line Rule-Based Hybrid Energy Management Strategy

2022-03-29
2022-01-0735
The pre-prototype development of a simulated rule-based hybrid energy management strategy for a 2019 Chevrolet Blazer RS converted parallel P4 full hybrid is presented. A vehicle simulation model is developed using component bench data and validated using EPA-reported dynamometer fuel economy test data. A combined Willans line model is proposed for the engine and transmission, with hybrid control rules based on efficiency-derived engine power thresholds. Algorithms are proposed for battery state of charge (SOC) management including engine loading and one pedal strategies, with battery SOC maintained within 20% to 80% safe limits and charge balanced behavior achieved. The simulated rule-based hybrid control strategy for the hybrid vehicle has an energy consumption reduction of 20% for the Hot 505, 3.6% for the HwFET, and 12% for the US06 compared to the stock vehicle.
Technical Paper

Does the Interaction between Vehicle Headlamps and Roadway Lighting Affect Visibility? A Study of Pedestrian and Object Contrast

2020-04-14
2020-01-0569
Vehicle headlamps and roadway lighting are the major sources of illumination at night. These sources affect contrast - defined as the luminance difference of an object from its background - which drives visibility at night. However, the combined effect of vehicle headlamps and intersection lighting on object contrast has not been reported previously. In this study, the interactive effects of vehicle headlamps and overhead lighting on object contrast were explored based on earlier work that examined drivers’ visibility under three intersection lighting designs (illuminated approach, illuminated box, and illuminated approach + box). The goals of this study were to: 1) quantify object luminance and contrast as a function of a vehicle’s headlamps and its distance to an intersection using the three lighting designs; and, 2) to assess whether contrast influences visual performance and perceived visibility in a highly dynamic intersection environment.
Technical Paper

ESS Design Process Overview and Key Outcomes of Year Two of EcoCAR 2: Plugging in to the Future

2014-04-01
2014-01-1922
EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Energy-Efficient and Context-Aware Computing in Software-Defined Vehicles for Advanced Driver Assistance Systems (ADAS)

2024-04-09
2024-01-2051
The rise of Software-Defined Vehicles (SDV) has rapidly advanced the development of Advanced Driver Assistance Systems (ADAS), Autonomous Vehicle (AV), and Battery Electric Vehicle (BEV) technology. While AVs need power to compute data from perception to controls, BEVs need the efficiency to optimize their electric driving range and stand out compared to traditional Internal Combustion Engine (ICE) vehicles. AVs possess certain shortcomings in the current world, but SAE Level 2+ (L2+) Automated Vehicles are the focus of all major Original Equipment Manufacturers (OEMs). The most common form of an SDV today is the amalgamation of AV and BEV technology on the same platform which is prominently available in most OEM’s lineups. As the compute and sensing architectures for L2+ automated vehicles lean towards a computationally expensive centralized design, it may hamper the most important purchasing factor of a BEV, the electric driving range.
X