Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

2015-04-14
2015-01-1243
A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper

A Comparative Study of New Magnesium Alloys Developed for Elevated Temperature Applications in Automotive Industry

2003-03-03
2003-01-0191
Recently several new magnesium alloys for high temperature applications have been developed with the aim to obtain an optimal combination of die castability, creep resistance, mechanical properties, corrosion performance and affordable cost. Unfortunately, it is very difficult to achieve an adequate combination of properties and in fact, most of the new alloys can only partially meet the required performance and cost. This paper aims at evaluating the current status of the newly developed alloys for powertrain applications. The paper also addresses the complexity of magnesium alloy development and illustrates the effect of alloying elements on properties and cost. In addition, the paper presents an attempt to set the position of each alloy in the integrated space of combined properties and cost
Video

A Framework for Simulation-Based Development and Calibration of VCU-Functions for Advanced PHEV Powertrains

2012-05-23
Due to the integration of many interacting subsystems like hybrid vehicle management, energy management, distance management, etc. into the VCU platform the design steps for function development and calibration become more and more complex. This makes an aid necessary to relieve the development. Therefore, the aim of the proposed simulation-based development and calibration design is to improve the time-and-cost consuming development stages of modern VCU platforms. A simulation-based development framework is shown on a complex function development and calibration case study using an advanced powertrain concept with a plug-in hybrid electric vehicle (PHEV) concept with two electrical axles. Presenter Thomas Boehme, IAV GmbH
Technical Paper

A Framework for Simulation-Based Development and Calibration of VCU-Functions for Advanced PHEV Powertrains

2012-04-16
2012-01-1032
Due to the integration of many interacting subsystems like hybrid vehicle management, energy management, distance management, etc. into the VCU platform the design steps for function development and calibration become more and more complex. This makes an aid necessary to relieve the development. Therefore, the aim of the proposed simulation-based development and calibration design is to improve the time-and-cost consuming development stages of modern VCU platforms. A simulation-based development framework is shown on a complex function development and calibration case study using an advanced powertrain concept with a plug-in hybrid electric vehicle (PHEV) concept with two electrical axles.
Journal Article

A Heuristic Approach for Offboard-Diagnostics in Advanced Automotive Systems

2009-04-20
2009-01-1027
As the complexity of current automobiles increases, new and innovative diagnostic methods for car maintenance and diagnostic inspection are greatly needed. This paper introduces a new diagnostic approach, which learns from previous repair cases with the help of neural networks in order to assist future diagnostic inspections. Practical experiments have shown that this approach is able to provide promising results even with the data that is already available today.
Technical Paper

A New Generation of Diesel Oxidation Catalysts

1992-10-01
922330
An overview is given on the state of the art of a new catalytic exhaust gas aftertreatment device for diesel engines. The function of a precious metal based, flow-through type diesel oxidation catalyst is explained. Much attention is paid to the durability of the diesel oxidation catalyst and especially to the influence of poisoning elements on the catalytic activity. Detailed data on the interaction of poisoning elements such as sulfur, zinc and phosphorus with the catalytic active sites are given. Finally it is demonstrated that it is possible to meet the stringent emission standards for diesel passenger cars in Europe with a new catalyst generation over 80.000 km AMA aging.
Technical Paper

A New Method to Assess the Summer Suitability of Car Seats

1993-03-01
930106
A new method has been designed to examine car seats by technical means only, whether they fit summer conditions or not. Test procedures start with the application of a carefully wetted cloth onto the seat to be examined. The test area is then covered by a temperature controlled, electrically heated solid body bloc. This simulates the body temperature and the seat pressure of a real seat user. During test periods of standard three hours, temperature and humidity is measured beneath the test device and in the surrounding air. As an effect of the water impulse the humidity increases under the body bloc. It has been proved that good summer suitability of a car seat is characterised by moderate amount and moderate duration of increased humidity readings. Poor suitability results in higher amount and longer duration of raised humidity. The method is shown to be useful to examine full scale car seats, child safety seats and single design characteristics of car seats as well.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

2008-06-23
2008-01-1606
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Accident Analysis and Measures to Establish Compatibility

1999-03-01
1999-01-0065
The vehicle fleet differs in mass, geometry, stiffness and many other parameters. These differences are consequences of different design objectives for these vehicles and result from consumer demand, environmental and safety considerations etc. Accident research shows that the injury outcome differs in some cases, when two vehicles collide. Scientists often discuss a list of features that are assumed to be relevant for compatibility of vehicles. The relevance of these potentially important compatibility features and expected compatibility measures is examined from the perspective of accident analysis. An overview of this accident research is given and crash tests and measures are discussed that correspond with these findings.
Journal Article

Achieving Very Low PN Emissions with an Advanced Multi-Hole Injector Functionality and Adapted Spray Targeting Under High Fuel Pressure Conditions

2014-10-13
2014-01-2605
In the near future, emissions legislation will become more and more restrictive for direct injection SI engines by adopting a stringent limitation of particulate number emissions in late 2017. In order to cope with the combustion system related challenges coming along with the introduction of this new standard, Hitachi Automotive Systems Ltd., Hitachi Europe GmbH and IAV GmbH work collaboratively on demonstrating technology that allows to satisfy EU6c emissions limitations by application of Hitachi components dedicated to high pressure injection (1). This paper sets out to describe both the capabilities of a new high pressure fuel system improving droplet atomization and consequently mixture homogeneity as well as the process of utilizing the technology during the development of a demonstrator vehicle called DemoCar. The Hitachi system consists of a fuel pump and injectors operating under a fuel pressure of 30 MPa.
Technical Paper

Achieving the Max - Potential from a Variable Compression Ratio and Early Intake Valve Closure Strategy by Combination with a Long Stroke Engine Layout

2017-09-04
2017-24-0155
The combination of geometrically variable compression (VCR) and early intake valve closure (EIVC) proved to offer high potential for increasing efficiency of gasoline engines. While early intake valve closure reduces pumping losses, it is detrimental to combustion quality and residual gas tolerance due to a loss of temperature and turbulence. Large geometric compression ratio at part load compensates for the negative temperature effect of EIVC with further improving efficiency. By optimizing the stroke/bore ratio, the reduction in valve cross section at part load can result in greater charge motion and therefore in turbulence. Turbocharging means the basis to enable an increase in stroke/bore ratio, called β in the following, because the drawbacks at full load resulting from smaller valves can be only compensated by additional boosting pressure level.
Journal Article

Acoustic-Fluid-Structure Interaction (AFSI) in the Car Underbody

2022-06-15
2022-01-0938
The turbulent flow around vehicles causes high amplitude pressure fluctuations at the underbody, consisting of both hydromechanic and acoustic contributions. This induces vibrations in the underbody structures, which in turn may lead to sound transmission into the passenger compartment, especially at low frequencies. To study these phenomena we present a run time fully coupled acoustic-fluid-structure interaction framework expanding a validated hybrid CFD-CAA solver. The excited and vibrating underbody is resembled by an aluminium plate in the underbody of the SAE body which allows for sound transmission into the interior. Different excitation situations are generated by placing obstacles at the underbody upstream of the aluminium plate. For this setup we carry out a fully coupled simulation of flow, acoustics and vibration of the plate.
Technical Paper

Advantages of Diesel Engine Control Using In-Cylinder Pressure Information for Closed Loop Control

2003-03-03
2003-01-0364
Increasing emissions regulations, diagnostics capability, and other demands in vehicle refinement, have led to the need for increasingly complex engine control systems. These demands have led to in-cylinder combustion control, especially for the diesel engine. Diesel engine combustion relies heavily on the auto-ignition process. Therefore accurate control of this process is important and will become even more important for HCCI-engines. This paper discusses the configuration of a diesel engine for in-cylinder combustion control. It describes the digital evaluation of the cylinder pressure signal and the computation of the physical parameters necessary for proper combustion analysis, along with methods for using the calculated combustion parameter for engine control. The paper demonstrates the advantages of electronic engine control combined with in-cylinder pressure information. The paper also addresses some of the future challenges of engine control.
Technical Paper

Air System Control for Advanced Diesel Engines

2007-04-16
2007-01-0970
In order to satisfy environmental regulations while maintaining strong performance and excellent fuel economy, advanced diesel engines are employing sophisticated air breathing systems. These include high pressure and low pressure EGR (Hybrid EGR), intake and exhaust throttling, and variable turbine geometry systems. In order to optimize the performance of these sub-systems, system level controls are necessary. This paper presents the design, benefits and test results of a model-based air system controller applied to an automotive diesel engine.
Technical Paper

Application of Detached-Eddy Simulation for Automotive Aerodynamics Development

2009-04-20
2009-01-0333
This paper presents a complete methodology for performing finite-volume-based detached-eddy simulation for the prediction of aerodynamic forces and detailed flow structures of passenger vehicles developed using the open-source CFD toolbox OpenFOAM®. The main components of the methodology consist of an automatic mesh generator, a setup and initialisation utility, a DES flow solver and analysis and post-processing routines. Validation of the predictions is done on the basis of detailed comparisons to experimental wind-tunnel data. Results for lift and drag are found to compare favourably to the experiments, with some moderate discrepancies in predicted rear lift. Point surface-pressure measurements, oil-streak images and maps of total pressure in the flow field demonstrate the approach's capabilities to predict the fine detail of complex flow regimes found in automotive aerodynamics.
Technical Paper

Application of the Adjoint Method for Vehicle Aerodynamic Optimization

2016-04-05
2016-01-1615
The aerodynamic optimization of an AUDI Q5 vehicle is presented using the continuous adjoint approach within the OpenFOAM framework. All calculations are performed on an unstructured automatically generated mesh. The primal flow, which serves as input for the adjoint method, is calculated using the standard CFD process at AUDI. It is based on DES calculations using a Spalart-Allmaras turbulence model. The transient results of the primal solution are time averaged and fed to a stationary adjoint solver using a frozen turbulence assumption. From the adjoint model, drag sensitivity maps are computed and measures for drag reduction are derived. The predicted measures are compared to CFD simulations and to wind tunnel experiments at 1:4 model scale. In this context, general challenges, such as convergence and accuracy of the adjoint method are discussed and best practice guidelines are demonstrated.
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
Technical Paper

Battery Simulation

2001-03-05
2001-01-0776
Battery simulation by a DSP-controlled high current power supply is used to improve repeatability and comparability of starting tests, especially at low temperatures. The simulator's algorithm calculates the internal resistance of the battery by a timely constant resistor and a variable resistor representing the actual discharge history. The output voltage of the simulator is set as a function of internal resistor and load current with temperature and state of charge as setup parameter. The simulator was evaluated in cold start testing in comparison to real batteries. As a result, batteries are simulated with high repeatability. Deviations to real battery behavior are in the range of test to test deviations using real batteries.
X