Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Technical Paper

A Novel Approach for Combat Vehicle Mobility Definition and Assessment

2012-04-16
2012-01-0302
Mobility assessment for combat vehicles is often a great challenge for the military due to various subjective attributes. The attributes' characteristics vary significantly depending on the vehicle type and its operating environments such as terrain, weather, and human factors. A clear definition and relationship between multiple attributes including human factors is necessary to assess mobility. To the best of authors' knowledge, many existing mobility assessment techniques use complex analytical methods and focus on individual attributes. In this paper, for the first time, the authors propose a novel approach to define vehicle mobility and its influencing attributes using qualitative linguistic fuzzy variables, which are defined as having values between 0 and 1. The authors also propose a fuzzy logic mobility (FLM) model and a simulation approach to assess a combat vehicle's mobility.
Journal Article

A Preliminary Study on the Restraint System of Self-Driving Car

2020-04-14
2020-01-1333
Due to the variation of compartment design and occupant’s posture in self-driving cars, there is a new and major challenge for occupant protection. In particular, the studies on occupant restraint systems used in the self-driving car have been significantly delayed compared to the development of the autonomous technologies. In this paper, a numerical study was conducted to investigate the effectiveness of three typical restraint systems on the driver protection in three different scenarios.
Technical Paper

A Simple Linear Approach for Transient Fuel Control

2003-03-03
2003-01-0360
Significant A/F ratio excursion may occur during some engine transient operations, especially for transient periods of throttle tip in or tip out. A/F ratio excursion results in excessive emissions, extra fuel consumption, driveability deterioration and three-way-catalyst (TWC) efficiency drop. Simple two-parameter (X, τ) wall wetting models have traditionally been used to describe this transient A/F ratio excursion phenomenon. The transient fuel control techniques are utilized for this model to be applicable across vehicles, engines, fuel types and ambient conditions, so as to compensate for the A/F ratio excursion with the extra compensation fuel. More complicated model structures must be further expanded and model dependence on various environment conditions must be established to achieve a precise model. In this paper, a simple linear approach is proposed for transient fuel control, using least squares estimation.
Technical Paper

A Visualization Study of Liquid Fuel Distribution and Combustion Inside a Port-Injected Gasoline Engine Under Different Start Conditions

2000-03-06
2000-01-0242
High-speed video of combustion processes and cylinder pressure traces were obtained from a single-cylinder optical-accessible engine with a production four-valve cylinder head to study the mixture formation and flame propagation characteristics at near-stoichiometric start condition. Laser-sheet Mie-scattering images were collected for liquid droplet distributions inside the cylinder to correlate the mixture formation process with the combustion results. A dual-stream (DS) injector and a quad-stream (QS) injector were used to study the spray dispersion effect on engine starting, under different injection timings, throttle valve positions, engine speeds, and intake temperatures. It was found that most of the fuel under open-valve injection (OVI) conditions entered the cylinder as droplet mist. A significant part of the fuel droplets hit the far end of the cylinder wall at the exhaust-valve side.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

Advancement and Validation of a Plug-In Hybrid Electric Vehicle Plant Model

2016-04-05
2016-01-1247
The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
Technical Paper

Aging Simulation of Electric Vehicle Battery Cell Using Experimental Data

2021-04-06
2021-01-0763
The adoption of lithium-ion batteries in vehicle electrification is fast growing due to high power and energy demand on hybrid and electric vehicles. However, the battery overall performance changes with time through the vehicle life. This paper investigates the electric vehicle battery cell aging under different usages. Battery cell experimental data including open circuit voltage and internal resistance is utilized to build a typical electric vehicle model in the AVL-Cruise platform. Four driving cycles (WLTP, UDDS, HWFET, and US06) with different ambient temperatures are simulated to acquire the battery cell terminal currents. These battery cell terminal current data are inputs to the MATLAB/Simulink battery aging model. Simulation results show that battery degrades quickly in high ambient temperatures. After 15,000 hours usage in 50 degrees Celsius ambient temperature, the usable cell capacity is reduced up to 25%.
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

2007-04-16
2007-01-0905
Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

An Experimental Investigation of Spray Transfer Processes in an Electrostatic Rotating Bell Applicator

1998-09-29
982290
A better understanding is needed of the electrostatic rotating bell (ESRB) application of metallic basecoat paint to automobile exteriors in order to exploit their high transfer efficiency without compromising the coating quality. This paper presents the initial results from experimental investigation of sprays from an ESRB which is designed to apply water-borne paint. Water was used as paint surrogate for simplicity. The atomization and transport regions of the spray were investigated using laser light sheet visualizations and phase Doppler particle analyzer (PDPA). The experiments were conducted at varying levels of the three important operating parameters: liquid flow rate, shaping-air flow rate, and bellcup rotational speed. The results show that bellcup speed dominates atomization, but liquid and shaping-air flow rate settings significantly influence the spray structure. The visualization images showed that the atomization occurs in ligament breakup regime.
Technical Paper

An Experimental Investigation on Aldehyde and Methane Emissions from Hydrous Ethanol and Gasoline Fueled SI Engine

2020-09-15
2020-01-2047
Use of ethanol as gasoline replacement can contribute to the reduction of nitrogen oxide (NOx) and carbon oxide (CO) emissions. Depending on ethanol production, significant reduction of greenhouse-gas emissions is possible. Concentration of certain species, such as unburned ethanol and acetaldehyde in the engine-out emissions are known to rise when ratio of ethanol to gasoline increases in the fuel. This research explores on hydrous ethanol fueled port-fuel injection (PFI) spark ignition (SI) engine emissions that contribute to photochemical formation of ozone, or so-called ozone precursors and the precursor of peroxyacetyl nitrates (PANs). The results are compared to engine operation on gasoline. Concentration obtained by FTIR gas analyzer, and mass-specific emissions of formaldehyde (HCHO), acetaldehyde (MeCHO) and methane (CH4) under two engine speed, four load and two spark advance settings are analyzed and presented.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

An Improved Adaptive Data Reduction Protocol for In-Vehicle Networks

2006-04-03
2006-01-1327
The demand for drive-by-wire, pre-crash warning and many other new features will require high bandwidth from the future in-vehicle networks. One way to satisfy the high bandwidth requirement of future vehicles is to use a higher bandwidth bus or multiple busses. However, the use of a higher bandwidth bus will increase the cost of the network. Similarly, the use of multiple buses will increase cost as well as the complexity of wiring. Thus, neither option is a viable solution. Another option could be the development of a higher layer protocol to reduce the amount of data to be transferred. The higher layer protocol could be acceptable provided it does not increase the message latencies. The cost of implementing the protocol will be marginal because it can be done by making changes in software. Various data reduction protocols are available in the literature. We have made changes in the existing data reduction protocols to improve the performance of the protocol.
Technical Paper

Analyses of Low-Frequency Motorcycle Noise Under Both Steady-State and Transient Operating Conditions

2021-08-31
2021-01-1108
This paper presents experimental investigations of diagnosing and analyzing the low-frequency, low- SNR (Signal to Noise Ratio) noise sources of three motorcycles using a hybrid technology that consists of a passive SODAR (Sonic Detection And Ranging) and modified HELS (Helmholtz Equation Least Squares) methods. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range that is consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, and sound transmission paths through arbitrarily shaped vibrating structures.
Technical Paper

Analysis of Accelerator Hardware for Autonomous Vehicles and Data Centers

2019-10-22
2019-01-2615
The development of Autonomous Vehicles (AV) has become a popular subject in academia and industry. Companies and cities are quickly realizing the opportunities that AVs can generate from Mobility as a Service to traffic safety. The challenges for the infrastructure to incorporate AVs as a viable transportation source are immense, from an outdated infrastructure to radical Smart-City designs. Historically, the transportation infrastructure has faced challenges from underfunding, economics, and much needed improvements. With the current infrastructure unable to support many of the services required by a fully connected network, a transformation will be necessary to meet growing mobility needs. The role of accelerating technology in data centers are key for production operations among industry leaders such as Amazon and Microsoft for real-time processing.
Technical Paper

Analyzing the Impact of Electric Vehicles on Power Losses and Voltage Profile in Power Distribution Systems

2022-03-29
2022-01-0748
As the number of electric vehicles (EVs) within society rapidly increase, the concept of maximizing its efficiency within the electric smart grid becomes crucial. This research presents the impacts of integrating EV charging infrastructures within a smart grid through a vehicle to grid (V2G) program. It also observes the circulation of electric charge within the system so that the electric grid does not become exhausted during peak hours. This paper will cover several different case studies and will analyze the best and worst scenarios for the power losses and voltage profiles in the power distribution system. Specifically, we seek to find the optimal location as well as the ideal number of EVs in the distribution system while minimizing its power losses and optimizing its voltage profile. Verification of the results are primarily conducted using GUIs created on MATLAB.
Technical Paper

Autoignition and Combustion of ULSD and JP8 during Cold Starting of a High Speed Diesel Engine

2017-03-28
2017-01-0797
Cold starting problems of diesel engines are caused mainly by the failure of the auto-ignition process or the subsequent combustion of the rest of the charge. The problems include long cranking periods and combustion instability leading to an increase in fuel consumption in addition to the emission of undesirable unburned hydrocarbons which appear in the exhaust as white smoke. The major cause of these problems is the low temperature and pressure of the charge near the end of the compression stroke and/or the poor ignition quality of the fuel. This paper presents the results of an experimental investigation of cold starting of a high speed diesel engine with ULSD (Ultra Low Sulphur Diesel) and JP8 (Jet Propulsion) fuels at ambient temperature (25°C). A detailed analysis is made of the autoignition and combustion of the two fuels in the first few cycles in the cold start transient. In addition, a comparison is made between these processes for the two fuels during idle operation.
Technical Paper

Automotive Hybrid System Optimization Using Dynamic Programming

2003-03-03
2003-01-0847
An automotive powertrain system consists of several interactive and linked nonlinear systems. This research focuses on the coordination of Gasoline Direct Injection (GDI) engine, transmission and emission aftertreatment systems. The goal is to design an optimal control strategy for driving performance, emissions (HC, CO, NOX), fuel economy and smoothness when switching engine mode and when shifting gears, under both discrete and continuous limitations. A multivariable control strategy is used to compromise among all powertrain subsystems to achieve optimal overall performance. A nonlinear discrete dynamic programming approach is proposed for hybrid system optimization. The complex multivariable automotive control problem is then simplified into an optimization problem. The feasibility of automotive hybrid control via the discrete dynamic programming approach is demonstrated by results from many numerical simulations under different operating conditions.
Technical Paper

Characteristics of Direct Injection Gasoline Spray Wall Impingement at Elevated Temperature Conditions

1999-10-25
1999-01-3662
The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and doublespark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray.
Technical Paper

Characteristics of a Common Rail Diesel Injection System under Pilot and Post Injection Modes

2002-03-04
2002-01-0218
Experiments were conducted to investigate the characteristics of a common rail fuel injection system using a flow rate test rig and a single cylinder research diesel engine. Experiments covered speeds and loads typical to engine conditions under Hybrid Electric Vehicle operation. Different injection modes were investigated including main injection, main-post injection and pilot-main injection. The analysis indicated that the common rail fuel pressure affects all the injection parameters including the start of fuel delivery, its duration and amount under all modes of injection. Also, the pressure waves produced in the system have an impact on the operation of the nozzle-needle and fuel delivery particularly in the main-post injection mode.
X