Refine Your Search

Topic

Search Results

Technical Paper

A New Model Comparing Impact Responses of the Homogeneous and Inhomogeneous Human Brain

1995-11-01
952714
A new three-dimensional human head finite element model, consisting of the scalp, skull, dura, falx, tentorium, pia, CSF, venous sinuses, ventricles, cerebrum (gray and white matter), cerebellum, brain stem and parasagittal bridging veins has been developed and partially validated against experimental data of Nahum et al (1977). A frontal impact and a sagittal plane rotational impact were simulated and impact responses from a homogeneous brain were compared with those of an inhomogeneous brain. Previous two-dimensional simulation results showed that differentiation between the gray and white matter and the inclusion of the ventricles are necessary in brain modeling to match regions of high shear stress to locations of diffuse axonal injury (DAI). The three-dimensional simulation results presented here also showed the necessity of including these anatomical features in brain modeling.
Technical Paper

A Preliminary Study of an Effective Restraint System for Pregnant Women and Children

1969-02-01
690814
A survey of accident reports and experimental studies showed that the lap belt does not provide sufficient protection for the pregnant car occupant in whom fetal injury or abortion often resulted. A net-type restraint system was used on pregnant sub-human primates which were subjected to decelerations of over 40g in a forward-facing configuration. The animals survived multiple impacts without treatment and delivered healthy infants. The data presented include belt loads, body kinematics, and intrauterine pressure measurements.
Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

A Study of the Response of the Human Cadaver Head to Impact

2007-10-29
2007-22-0002
High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests.
Technical Paper

Analysis of Head and Neck Response During Side Impact

1999-03-01
1999-01-0717
Numerical analyses of head and neck response during side impact are presented in this paper. A mathematical human model for side impact simulation was developed based on previous studies of other researchers. The effects of muscular activities during severe side impact were analyzed with the use of this model. This study shows that the effect of muscular activities is significant especially if the occupant is prepared to resist the impact. This result suggests that the modeling of muscles is important for the simulation of real accident situation.
Technical Paper

Application of a Finite Element Model of the Brain to Study Traumatic Brain Injury Mechanisms in the Rat

2006-11-06
2006-22-0022
Complete validation of any finite element (FE) model of the human brain is very difficult due to the lack of adequate experimental data. However, more animal brain injury data, especially rat data, obtained under well-defined mechanical loading conditions, are available to advance the understanding of the mechanisms of traumatic brain injury. Unfortunately, internal response of the brain in these experimental studies could not be measured. The aim of this study was to develop a detailed FE model of the rat brain for the prediction of intracranial responses due to different impact scenarios. Model results were used to elucidate possible brain injury mechanisms. An FE model, consisting of more than 250,000 hexahedral elements with a typical element size of 100 to 300 microns, was developed to represent the brain of a rat. The model was first validated locally against peak brain deformation data obtained from nine unique dynamic cortical deformation (vacuum) tests.
Technical Paper

Computational Study of the Contribution of the Vasculature on the Dynamic Response of the Brain

2002-11-11
2002-22-0008
Brain tissue architecture consists of a complex network of neurons and vasculature interspersed within a matrix of supporting cells. The role of the relatively suffer blood vessels on the more compliant brain tissues during rapid loading has not been properly investigated. Two 2-D finite element models of the human head were developed. The basic model (Model I) consisted of the skull, dura matter, cerebral spinal fluid (CSF), tentorium, brain tissue and the parasagittal bridging veins. The pia mater was also included but in a simplified form which does not correspond to the convolutions of the brain. In Model II, major branches of the cerebral arteries were added to Model I. Material properties for the brain tissues and vasculature were taken from those reported in the literature. The model was first validated against intracranial pressure and brain/skull relative motion data from cadaveric tests.
Technical Paper

Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference

2006-11-06
2006-22-0017
Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
Technical Paper

Development of a Computer Model to Predict Aortic Rupture Due to Impact Loading

2001-11-01
2001-22-0007
Aortic injuries during blunt thoracic impacts can lead to life threatening hemorrhagic shock and potential exsanguination. Experimental approaches designed to study the mechanism of aortic rupture such as the testing of cadavers is not only expensive and time consuming, but has also been relatively unsuccessful. The objective of this study was to develop a computer model and to use it to predict modes of loading that are most likely to produce aortic ruptures. Previously, a 3D finite element model of the human thorax was developed and validated against data obtained from lateral pendulum tests. The model included a detailed description of the heart, lungs, rib cage, sternum, spine, diaphragm, major blood vessels and intercostal muscles. However, the aorta was modeled as a hollow tube using shell elements with no fluid within, and its material properties were assumed to be linear and isotropic.
Technical Paper

Development of a Three-Dimensional Finite Element Chest Model for the 5th Percentile Female

2005-11-09
2005-22-0012
Several three-dimensional (3D) finite element (FE) models of the human body have been developed to elucidate injury mechanisms due to automotive crashes. However, these models are mainly focused on 50th percentile male. As a first step towards a better understanding of injury biomechanics in the small female, a 3D FE model of a 5th percentile female human chest (FEM-5F) has been developed and validated against experimental data obtained from two sets of frontal impact, one set of lateral impact, two sets of oblique impact and a series of ballistic impacts. Two previous FE models, a small female Total HUman Model for Safety (THUMS-AF05) occupant version 1.0ϐ (Kimpara et al., 2002) and the Wayne State University Human Thoracic Model (WSUHTM, Wang 1995 and Shah et al., 2001) were integrated and modified for this model development.
Technical Paper

Development of a Two-Dimensional Driver Side Airbag Deployment Algorithm

1990-10-01
902323
A PC based interactive program was developed to simulate the unfolding and deploying process of a driver side airbag in the sagittal plane. The airbag was represented by a series of nodes. The maximum allowable stretch was less or equal to one between any two nodes. We assumed that the airbag unfolding was pivoted about folded points. After the completion of the unfolding process the airbag would begin to deploy. During the deploying process, two parameters were used to determine the nodal priority of the inflation. The first parameter was the distance between the instantaneous and final positions of a node. Nodes with longer distances to travel will have to move faster. We also considered the distance between the current nodal position and the gas inlet location. For a node closer to the gas inlet, we assumed that the deploying speed was faster. A graphical procedure was used to calculate the area of the airbag.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Development of an FE Model of the Rat Head Subjected to Air Shock Loading

2010-11-03
2010-22-0011
As early as the 1950's, Gurdjian and colleagues (Gurdjian et al., 1955) observed that brain injuries could occur by direct pressure loading without any global head accelerations. This pressure-induced injury mechanism was "forgotten" for some time and is being rekindled due to the many mild traumatic brain injuries attributed to blast overpressure. The aim of the current study was to develop a finite element (FE) model to predict the biomechanical response of rat brain under a shock tube environment. The rat head model, including more than 530,000 hexahedral elements with a typical element size of 100 to 300 microns was developed based on a previous rat brain model for simulating a blunt controlled cortical impact. An FE model, which represents gas flow in a 0.305-m diameter shock tube, was formulated to provide input (incident) blast overpressures to the rat model. It used an Eulerian approach and the predicted pressures were verified with experimental data.
Technical Paper

Experimental and Analytical Study of Knee Fracture Mechanisms in a Frontal Knee Impact

1996-11-01
962423
The mechanisms of knee fracture were studied experimentally using cadaveric knees and analytically by computer simulation. Ten 90 degree flexed knees were impacted frontally by a 20 kg pendulum with a rigid surface, a 450 psi (3.103 MPa) crush strength and a 100 psi (0.689 MPa) crush strength aluminum honeycomb padding and a 50 psi (0.345 MPa) crush strength paper honeycomb padding at a velocity of about five m/s. During rigid surface impact, a patella fracture and a split condylar fracture were observed. The split condylar fracture was generated by the patella pushing the condyles apart, based on a finite element model using the maximum principal stress as the injury criterion. In the case of the 450 psi aluminum honeycomb padding, the split condylar fracture still occurred, but no patella fractures were observed because the honeycomb provided a more uniform distribution of patella load. No bony fractures in the knee area occurred for impacts with a 50 psi paper honeycomb padding.
Technical Paper

Finite Element Modeling of Direct Head Impact

1993-11-01
933114
A 3-D finite element human head model has been developed to study the dynamic response of the human head to direct impact by a rigid impactor. The model simulated closely the main anatomical features of an average adult head. It included the scalp, a three-layered skull, cerebral spinal fluid (CSF), dura mater, falx cerebri, and brain. The layered skull, cerebral spinal fluid, and brain were modeled as brick elements with one-point integration. The scalp, dura mater, and falx cerebri were treated as membrane elements. To simulate the strain rate dependent characteristics of the soft tissues, the brain and the scalp were considered as viscoelastic materials. The other tissues of the head were assumed to be elastic. The model contains 6080 nodes, 5456 brick elements, and 1895 shell elements. To validate the head model, it was impacted frontally by a cylinder to simulate the cadaveric tests performed by Nahum et. al. (8).
Technical Paper

Finite Element Modeling of Gross Motion of Human Cadavers in Side Impact

1994-11-01
942207
Seventeen Heidelberg type cadaveric side impact sled tests, two sled-to-sled tests, and forty-four pendulum tests have been conducted at Wayne State University, to determine human responses and tolerances in lateral collisions. This paper describes the development of a simplified finite element model of a human occupant in a side impact configuration to simulate those cadaveric experiments. The twelve ribs were modeled by shell elements. The visceral contents were modeled as an elastic solid accompanied by an array of discrete dampers. Bone condition factors were obtained after autopsy to provide material properties for the model. The major parameters used for comparison are contact forces at the level of shoulder, thorax, abdomen and pelvis, lateral accelerations of ribs 4 and 8 and of T12, thoracic compression and injury functions V*C, TTI and ASA.
Technical Paper

Finite Element Simulation of Ankle/Foot Injury in Frontal Crashes

2000-03-06
2000-01-0156
Finite element models of human body segments have been developed in recent years. Numerical simulation could be helpful when understanding injury mechanisms and to make injury assessments. In the lower leg injury research in NISSAN, a finite element model of the human ankle/foot is under development. The mesh for the bony part was taken from the original model developed by Beaugonin et al., but was revised by adding soft tissue to reproduce realistic responses. Damping effect in a high speed contact was taken into account by modeling skin and fat in the sole of the foot. The plantar aponeurosis tendon was modeled by nonlinear bar elements connecting the phalanges to the calcaneus. The rigid body connection, which was defined at the toe in the original model for simplicity, was removed and the transverse ligaments were added instead in order to bind the metatarsals and the phalanges. These tendons and ligaments were expected to reproduce a realistic response in compression.
Technical Paper

High-Speed Seatbelt Pretensioner Loading of the Abdomen

2006-11-06
2006-22-0002
This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused.
Technical Paper

Lower Limb Biomechanics

1986-10-01
861924
Normal motion of the lower limbs is discussed in this paper. The biomechanics of human gait has been studied experimentally using an instrumented walkway and analytically by means of mathematical models. Experimental methods for measuring ground reaction forces and limb kinematics are discussed. If limb kinematics are known, they can be used to compute the resultant joint forces and moments, using equations of motion which are algebraic in form. To obtain limb kinematics from the differential equations of motion, the problem is generally redundant, the degree of redundancy being equal to the number of unknown joint moments. The computation of muscle, ligament and bone contact forces from known resultant loads is also a redundant problem because there are more unknowns than there are available equations. For these there is no general consensus regarding the best objective function to be minimized.
Technical Paper

Lower Limb: Advanced FE Model and New Experimental Data

2001-11-01
2001-22-0022
The Lower Limb Model for Safety (LLMS) is a finite element model of the lower limb developed mainly for safety applications. It is based on a detailed description of the lower limb anatomy derived from CT and MRI scans collected on a subject close to a 50th percentile male. The main anatomical structures from ankle to hip (excluding the hip) were all modeled with deformable elements. The modeling of the foot and ankle region was based on a previous model Beillas et al. (1999) that has been modified. The global validation of the LLMS focused on the response of the isolated lower leg to axial loading, the response of the isolated knee to frontal and lateral impact, and the interaction of the whole model with a Hybrid III model in a sled environment, for a total of nine different set-ups. In order to better characterize the axial behavior of the lower leg, experiments conducted on cadaveric tibia and foot were reanalyzed and experimental corridors were proposed.
X