Refine Your Search

Topic

Search Results

Technical Paper

A Numerical Investigation of Nozzle Geometry and Injection Condition Effects on Diesel Fuel Injector Flow Physics

2008-04-14
2008-01-0936
A three-dimensional homogeneous equilibrium model (HEM) has been developed and implemented into an engine computational fluid dynamics (CFD) code KIVA-3V. The model was applied to simulate cavitating flow within injector nozzle passages. The effects of nozzle passage geometry and injection conditions on the development of cavitation zones and the nozzle discharge coefficient were investigated. Specifically, the effects of nozzle length (L/D ratio), nozzle inlet radius (R/D ratio) and K or KS factor (nozzle passage convergence) were simulated, and the effects of injection and chamber pressures, and time-varying injection pressure were also investigated. These effects are well captured by the nozzle flow model, and the predicted trends are consistent with those from experimental observations and theoretical analyses.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

Application of Schlieren Optical Techniques for the Measurement of Gas Temperature and Turbulent Diffusivity in a Diesel Engine

1993-03-01
930869
A new technique which is based on optoacoustic phenomena has been developed for measuring in-cylinder gas temperature and turbulent diffusivity. In the experiments, a high energy Nd:YAG pulsed laser beam was focused to cause local ionization of air at a point in the combustion chamber. This initiates a shock wave and creates a hot spot. The local temperature and turbulent diffusivity are determined by monitoring the shock propagation and the hot spot growth, respectively, with a schlieren photography system. In order to assess the validity and accuracy of the measurements, the technique was also applied to a turbulent jet. The temperature measurements were found to be accurate to within 3%. Results from the turbulent jet measurements also showed that the growth rate of the hot spot diameter can be used to estimate the turbulent diffusivity. In-cylinder gas temperature measurements were made in a motored single cylinder Caterpillar diesel engine, modified for optical access.
Technical Paper

Assessment of RNG Turbulence Modeling and the Development of a Generalized RNG Closure Model

2011-04-12
2011-01-0829
RNG k-ε closure turbulence dissipation equations are evaluated employing the CFD code KIVA-3V Release 2. The numerical evaluations start by considering simple jet flows, including incompressible air jets and compressible helium jets. The results show that the RNG closure turbulence model predicts lower jet tip penetration than the "standard" k-ε model, as well as being lower than experimental data. The reason is found to be that the turbulence kinetic energy is dissipated too slowly in the downstream region near the jet nozzle exit. In this case, the over-predicted R term in RNG model becomes a sink of dissipation in the ε-equation. As a second step, the RNG turbulence closure dissipation models are further tested in complex engine flows to compare against the measured evolution of turbulence kinetic energy, and an estimate of its dissipation rate, during both the compression and expansion processes.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on D.I. Diesel Emissions and Performance

1995-02-01
950604
An emissions and performance study was performed to show the effects of injection pressure, nozzle hole inlet condition (sharp and rounded edge) and nozzle included spray angle on particulate, NOx, and BSFC. The tests were conducted on a fully instrumented single-cylinder version of the Caterpillar 3406 heavy duty engine at 75% and 25% load at 1600 RPM. The fuel system consisted of an electronically controlled, hydraulically actuated, unit injector capable of injection pressures up to 160 MPa. Particulate versus NOx trade-off curves were generated for each case by varying the injection timing. The 75% load results showed the expected decrease in particulate and flattening of the trade-off curve with increased injection pressure. However, in going from 90 to 160 MPa, the timing had to be retarded to maintain the same NOx level, and this resulted in a 1 to 2% increase in BSFC. The rounded edged nozzles were found to have an increased discharge coefficient.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

1995-10-01
952360
A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
Technical Paper

Experimental Assessment of Reynolds-Averaged Dissipation Modeling in Engine Flows

2007-09-16
2007-24-0046
The influence of the constant C3, which multiplies the mean flow divergence term in the model equation for the turbulent kinetic energy dissipation, is examined in a motored diesel engine for three different swirl ratios and three different spatial locations. Predicted temporal histories of turbulence energy and its dissipation are compared with experimentally-derived estimates. A “best-fit” value of C3 = 1.75, with an approximate uncertainty of ±0.3 is found to minimize the error between the model predictions and the experiments. Using this best-fit value, model length scale behavior corresponds well with that of measured velocity-correlation integral scales during compression. During expansion, the model scale grows too rapidly. Restriction of the model assessment to the expansion stroke suggests that C3 = 0.9 is more appropriate during this period.
Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
Technical Paper

Intake Flow Simulation and Comparison with PTV Measurements

1999-03-01
1999-01-0176
Intake flow simulations were carried out for a prototype DISI engine using the standard k-ε model and the RNG k-ε model. The results were compared with PTV (transient water analog) measurements. The study was focused on low load operations with engine speed at 400 rev/min. Two cases were studied, a single intake case in which one intake port was blocked and a dual intake port case. In the computations, the results show that the standard k-ε model tends to produce higher turbulence levels when turbulence is generated and decays faster when turbulence dissipates. Different turbulence models predict almost the same flow structures. However, the effects of the turbulence model on the predicted tumble and swirl ratios are significant. The TKE distributions at BDC predicted by the two models are also different. The standard k-ε model seems to be more diffusive. Good agreements with PTV data were obtained in the single valve case with the RNG k-ε model.
Technical Paper

Late-Cycle Turbulence Generation in Swirl-Supported, Direct-Injection Diesel Engines

2002-03-04
2002-01-0891
Cycle-resolved analysis of velocity data obtained in the re-entrant bowl of a fired high-;speed, direct-injection diesel engine, demonstrates an unambiguous, approximately 100% increase in late-cycle turbulence levels over the levels measured during motored operation. Model predictions of the flow field, obtained employing RNG k-ε turbulence modeling in KIVA-3V, do not capture this increased turbulence. A combined experimental and computational approach is taken to identify the source of this turbulence. The results indicate that the dominant source of the increased turbulence is associated with the formation of an unstable distribution of mean angular momentum, characterized by a negative radial gradient. The importance of this source of flow turbulence has not previously been recognized for engine flows. The enhanced late-cycle turbulence is found to be very sensitive to the flow swirl level.
Technical Paper

Modeling Fuel System Performance and Its Effect on Spray Characteristics

2000-03-06
2000-01-1253
Fuel Injection System (FIS) research on injection pressure, timing control, and rate shaping, and studies on the modeling of injector nozzle flows and their effect on fuel spray characteristics are usually conducted separately. Only recently has the fuel injection and spraying process been studied as a complete system, i.e., including both the high-pressure fuel delivery and its effect on the nozzle flow characteristics, including nozzle cavitation. A methodology for coupling the fuel injection system and its effect on spray characteristics is presented here. The method is applied to an example case of a conventional pump-line-nozzle system. Mathematical models for characterizing the flows from the pump to the nozzle are formulated and solved using the Method of Characteristics and finite difference techniques. The nozzle internal flow is modeled using zero-dimensional flow models, in which the nozzle cavitation and its effect on the nozzle exit flow are accounted for.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

2003-03-03
2003-01-1088
The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine

1996-05-01
961192
Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions.
Technical Paper

Non-Equilibrium Turbulence Considerations for Combustion Processes in the Simulation of DI Diesel Engines

2000-03-06
2000-01-0586
A correction for the turbulence dissipation, based on non-equilibrium turbulence considerations from rapid distortion theory, has been derived and implemented in combination with the RNG k - ε model in a KIVA-based code. This model correction has been tested and compared with the standard RNG k - ε model for the compression and the combustion phase of two heavy duty DI diesel engines. The turbulence behavior in the compression phase shows clear improvements over the standard RNG k - ε model computations. In particular, the macro length scale is consistent with the corresponding time scale and with the turbulent kinetic energy over the entire compression phase. The combustion computations have been performed with the characteristic time combustion model. With this dissipation correction no additional adjustments of the turbulent characteristic time model constant were necessary in order to match experimental cylinder pressures and heat release rates of the two engines.
Technical Paper

Numerical Analysis of High-Pressure Fast-Response Common Rail Injector Dynamics

2002-03-04
2002-01-0213
Managing the injection rate profile is a powerful tool to control engine performance and emission levels. In particular, Common Rail (C.R.) injection systems allow an almost completely flexible fuel injection event in DI-diesel engines by permitting a free mapping of the start of injection, injection pressure, rate of injection and, in the near future, multiple injections. This research deals with the development of a network-based numerical tool for understanding operating condition limits of the Common Rail injector. The models simulate the electro-fluid-mechanical behavior of the injector accounting for cavitation in the nozzle holes. Validation against experiments has been performed. The model has been used to provide insight into the operating conditions of the injector and in order to highlight the application to injection system design.
Technical Paper

On the Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating Conditions

1979-02-01
790494
In the Atomization regime, liquid jets breakup either within the nozzle or immediately upon entering the chamber gas and drops much smaller than the jet diameter are formed. The mechanism of Atomization, which is presently unknown, was investigated by the simultaneous use of two photographic techniques. The initial transient was observed with a 106 frames/s camera and the steady state by a technique similar to spark photography. The experiment range was: liquid pressure 500 to 2500 psia; five mixtures of water and glycerol to vary the liquid viscosity; air, nitrogen, helium, and xenon at up to 600 psia as chamber gases to separate gas pressure from gas density effects; and 14 nozzle designs. Not changed were the temperature (room value), the nozzle diameter (340 μ), and the surface tension (70 dyne/cm).
Technical Paper

Particle Image Velocimetry Measurements in the Piston Bowl of a DI Diesel Engine

1994-03-01
940283
Particle Image Velocimetry (PIV) was used to make gas velocity and turbulence measurements in a motored diesel engine. The experiments were conducted using a single-cylinder version of the Caterpillar 3406 production engine. One of the exhaust valves and the fuel injector port were used to provide optical access to the combustion chamber so that modifications to the engine geometry were minimal, and the results are representative of the actual engine. Measurements of gas velocity were made in a plane in the piston bowl using TiO2 seed particles. The light sheet necessary for PIV was formed by passing the beam from a Nd:YAG laser through the injector port and reflecting the beam off a conical mirror at the center of the piston. PIV data was difficult to obtain due to significant out-of-plane velocities. However, data was acquired at 25° and 15° before top dead center of compression at 750 rev/min.
Technical Paper

Pressure-Swirl Atomization in the Near Field

1999-03-01
1999-01-0496
To model sprays from pressure-swirl atomizers, the connection between the injector and the downstream spray must be considered. A new model for pressure-swirl atomizers is presented which assumes little knowledge of the internal details of the injector, but instead uses available observations of external spray characteristics. First, a correlation for the exit velocity at the injector exit is used to define the liquid film thickness. Next, the film must be modeled as it becomes a thin, liquid sheet and breaks up, forming ligaments and droplets. A linearized instability analysis of the breakup of a viscous, liquid sheet is used as part of the spray boundary condition. The spray angle is estimated from spray photographs and patternator data. A mass averaged spray angle is calculated from the patternator data and used in some of the calculations.
Technical Paper

Principal Component Analysis and Study of Port-Induced Swirl Structures in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-1696
In this work computational and experimental approaches are combined to characterize in-cylinder flow structures and local flow field properties during operation of the Sandia 1.9L light-duty optical Diesel engine. A full computational model of the single-cylinder research engine was used that considers the complete intake and exhaust runners and plenums, as well as the adjustable throttling devices used in the experiments to obtain different swirl ratios. The in-cylinder flow predictions were validated against an extensive set of planar PIV measurements at different vertical locations in the combustion chamber for different swirl ratio configurations. Principal Component Analysis was used to characterize precession, tilting and eccentricity, and regional averages of the in-cylinder turbulence properties in the squish region and the piston bowl.
Technical Paper

Scaling Aspects of the Characteristic Time Combustion Model in the Simulation of Diesel Engines

1999-03-01
1999-01-1175
Combustion simulations utilizing the characteristic time combustion model have been performed for four DI diesel engines ranging in size from heavy-duty to large-bore designs. It has been found that the pre-factor to the turbulent characteristic time acts as a scaling parameter between the engines. This phenomenon is explained in terms of the non-equilibrium behavior of the turbulent time and length scales, as is encountered in the rapidly distorting, spray-induced flows of DI diesel engines. In fact, the equilibrium assumption between turbulence production and dissipation, which forms the basis for the employed k-ε-type turbulence models, does not hold in these situations. For such flows, the real turbulent dissipation time scale is locally proportional to the turbulent characteristic time scale which is determined by a typical eddy turnover time.
X