Refine Your Search

Topic

Author

Search Results

Technical Paper

Analysis of Knocking Mechanism Applying the Chemical Luminescence Method

1995-02-01
951005
One of the most effective means of improving the thermal efficiency and the specific fuel consumption in spark ignition engines is the increase of the compression ratio. However, there is a limit to it because of the generation of knocking combustion due to the rise of temperature and pressure in the unburnt mixture. Also in turbo charged spark ignition engines, the ignition timing cannot be advanced until MBT in order to avoid the knocking phenomena. Generally speaking, it is very difficult to investigate the phenomena in an actual engine, because there are many restriction and the phenomena are too complex and too fast. According-ly, it is advantageous to reveal the phenomena fundamentally, including the autoignition process of the end-gas by using simplified model equipment. Therefore, a rapid compression and expansion machine (RCEM) with a pan-cake combustion chamber was designed and developed for the experiments presented here.
Technical Paper

Analysis of Visualized Fuel Flow inside the Slit Nozzle of Direct Injection SI Gasoline Engine

2003-03-03
2003-01-0060
In the direct injection spark ignition gasoline engine (D-4), thin fan-shaped high-dispersion, high-penetration and high-atomization spray formed by the slit nozzle generates a stratified mixture cloud without depending on a strong intake air motion, subsequently realizing stable stratified charge combustion. To improve fuel economy further in actual traffic, the region of stratified charge combustion in torque-engine speed map must be expanded by improving spray characteristics. Since the fuel flow inside the nozzle has a large effect on the spray characteristics, it was clarified this effect by visual analysis of the fuel flow inside the nozzle using an enlarged acrylic slit nozzle of 10 magnifications. Consequently, it was found that vortices are generated frequently within a sac even in the case of steady state conditions. The effect on the spray characteristics is corresponding to the vortex scale.
Technical Paper

Artificial Control of Diesel Spray and Flame Feature by using Dual-component Fuel

2015-09-01
2015-01-1916
Fuel design approach has been proposed as the control technique of spray and combustion processes in diesel engine to improve thermal efficiency and reduce exhaust emissions. In order to kwow if this approach is capable of controlling spray flame structure and interaction between the flame and a combustion chamber wall, the present study investigated ignition and flame characteristics of dual-component fuels, while varying mixing fraction, fuel temperature and ambient conditions. Those characteristics were evaluated through chemiluminescence photography and luminous flame photography. OH radical images and visible luminous flame images were analyzed to reveal flame shape aspect ratio and its fractal dimension.
Technical Paper

Attainment of High Thermal Efficiency and Near-zero Emissions by Optimizing Injected Spray Configuration in Direct Injection Hydrogen Engines

2019-12-19
2019-01-2306
The authors have previously proposed a plume ignition and combustion concept (i.e., PCC combustion), in which a hydrogen fuel is directly injected to the combustion chamber in the latter half of compression stroke and forms a richer mixture plume. By combusting the plume, both cooling losses and NOx formation are reduced. In this study, thermal efficiency was substantially improved and NOx formation was reduced with PCC combustion by optimizing such characteristics as direction and diameter of the jets in combination with combustion of lean mixture. Output power declined due to the lean mixture, however, was recovered by supercharging while keeping NOx emissions at the same level. Thermal efficiency was further improved by slightly re-optimizing the jet conditions.
Technical Paper

CO2 Mixed Fuel Combustion System for Reduction of NO and Soot Emission in Diesel Engine

1997-02-24
970319
We propose a new concept on simultaneous reduction of NO and soot emissions in Diesel engine exhaust by the diesel fuel oil (n-Tridecane) with liquefied CO2 dissolved. The CO2 dissolved fuel is expected to undergo flash boiling or gas separation when being injected into the combustion chamber and improve spray atomization and mixing process both of which are primary factors to govern soot formation. Also the internal EGR effect caused by CO2 injected with the fuel is expected to NO formation. In order to assess this concept, combustion experiments were carried out using a rapid compression and expansion machine. Thus, flame characteristics and heat release rate were analyzed for the combustion process of diesel fuel and CO2 mixed fuel. And, it is revealed that the diesel fuel-liquefied CO2 mixed fuel can successfully reduce NO emission in a diesel combustion system.
Technical Paper

Characteristics of Combustion in an IDI Diesel Engine with a Swirl Chamber Made of Ceramics

1992-02-01
920696
There is a concept that the increase in the temperature of charge in a combustion chamber and the shield of heat transferred through a chamber wall can facilitate the oxidation of soot and reduce the discharge of soot from the engine. In the experiments presented here in, an IDI diesel engine was used to inspect the concept. The engine was installed a bigger sized cylindrical swirl chamber which was equipped with two flat quarts windows, in order to observe the combustion phenomena and to apply the optical measurement. The experiments were carried out using two types of divided chambers, that is, the swirl chamber made of ceramics and that made of steel, to examine the the effects mentioned above.
Technical Paper

Characteristics of Mixture Formation in a Direct Injection SI Engine with Optimized In-Cylinder Swirl Air Motion

1999-03-01
1999-01-0505
This paper presents a study of mixture formation in the combustion chamber of a direct-injection SI engine. In-cylinder flow measurement was conducted using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV), and visualization of fuel vapor behavior was done using laser-induced fluorescence (LIF). Further, fast response flame ionization detector (FID) was used to measure the hydrocarbon (HC) concentrations in the vicinity of the spark plug. Thereby mixture concentrations in the vicinity of the spark plug, within the mixture distribution observed using LIF, were quantified. Results revealed that an upward flow forms near the center of the cylinder in the latter half of the compression stroke and goes from the piston crown toward the cylinder head. This upward flow is caused by the synergistic effect of the swirl motion generated in the cylinder and the cylindrical bowl provided in the piston crown eccentrically to the central axis of the cylinder.
Technical Paper

Detection of Luminescence from Pre-Autoignition Reaction Zone in S.I. Engine

1997-02-24
970508
Knocking phenomenon in a spark ignition engine breaks out due to autoignition in the unburned gas region. Investigation on the pre-autoignition reaction, that is, the reaction of cool and blue flames happening before autoignition must be carried out in detail to control knocking. The reactions appear in an extremely short time before autoignition, so, much difficulties accompany an attempt to grasp the situation. In the experiments presented hear, progress situation of pre-autoignition reaction was made clear by visualized phenomena in a rapid compression and expansion machine (R.C.E.M), which had good reproducibility. Taken by two ultra high-speed video cameras. We determined the ignition delay time was caught by analyzing the emission of light from the combustion chamber before knocking occurrence.
Technical Paper

Development of a New Compound Fuel and Fluorescent Tracer Combination for Use with Laser Induced Fluorescence

1995-10-01
952465
Laser induced fluorescence (LIF) is a useful method for visualizing the distribution of the air-fuel ratio in the combustion chamber. The way this method is applied mainly depends on the fluorescent tracer used, such as biacetyl, toluene, various aldehydes, fluoranthene or diethylketone, among others. Gasoline strongly absorbs light in the UV region, for example, at the 248-nm wavelength of broadband KrF excimer laser radiation. Therefore, when using this type of laser, iso-octane is employed as the fuel because it is transparent to 248-nm UV light. However, since the distillation curves of iso-octane and gasoline are different, it can be expected that their vaporization characteristics in the intake port and cylinder would also be different. The aim of this study was to find a better fuel for use with LIF at a broadband wavelength of 248 nm. Three tasks were undertaken in this study.
Technical Paper

Distribution of Fuel Droplets, Hydrocarbon and Soot in Diesel Combustion Chamber

1983-02-01
830456
Distribution of injected fuel droplets, total hydrocarbon concentration and soot concentration in the combustion chamber of a diesel engine with a swirl chamber have been measured microscopically with regard to the time and the space by means of optical method. As a result of this study, effect of the swirl flow on atomized droplet distribution, relation between the droplets and hydrocarbon concentration, and relation between the change in concentration gradient of hydrocarbon with the time and the velocity of the swirl flow, and effect of non-luminous flame on the time of heat release rate raising period have been obtained. And from spatial distributions of hydrocarbon concentration, soot concentration, and local temperature in the combustion chamber at each time, the locational characteristics of soot generation are clarified. Further, effects of hydrocarbon and local temperature on soot generation have been considered.
Technical Paper

Distribution of Vapor Concentration in a Diesel Spray Impinging on a Flat Wall by Means of Exciplex Fluorescence Method -In Case of High Injection Pressure-

1997-10-01
972916
Diesel sprays injected into a combustion chamber of a small sized high-speed CI engine impinge surely on a piston surface and a cylinder wall. As a consequence, their vaporization, mixture formation and combustion processes are affected by impingement phenomena. And the other important factors affecting on the processes is the injection pressure. Then, the distribution of the vapor concentration in a single diesel spray impinging on a flat and hot wall was experimented by the exciplex fluorescence method, as a simple case. The injection pressure was varied in the range from 55 MPa to 120 MPa. It is found that the distribution of the vapor concentration in this case is much leaner than that in the case of the low injection pressure of 17.8MPa.
Technical Paper

Effect of Different Fuel Supply System on Combustion Characteristics in Hydrogen SI Engine

2022-01-09
2022-32-0092
In recent years, internal combustion engine using hydrogen gas, has attracted attention as one solution to the problem of global warming. Hydrogen gas has excellent combustion characteristics such as wide limits of inflammability and fast burning velocity because of high diffusion rate. Therefore, it has been made to obtain stable ignition and combustion by adding hydrogen with lean mixture in spark ignition engines using hydrocarbon fuels and to be attempted efficient operation by engine researchers. The purpose of this study is to reduce cooling loss in a gas engine using hydrogen gas and hydrogen Mixer system (Mixer) engine was remodeled to hydrogen Port Injection (PI) system engine. In this report, the heterogeneity of hydrogen mixture is clarified by comparing the combustion characteristics of the Mixer and the PI, and the effect of the difference in hydrogen supply systems on cooling loss is system. Ignition delay of the PI system is shorter than that of the Mixer.
Journal Article

Efficiency and Emissions-Optimized Operating Strategy of a High-pressure Direct Injection Hydrogen Engine for Heavy-duty Trucks

2009-11-02
2009-01-2683
Hydrogen engines are required to provide high thermal efficiency and low nitrogen oxide (NOx) emissions. There are many possible combinations of injection pressure, injection timing, ignition timing, lambda and EGR rate that can be used in a direct-injection system for achieving such performance. In this study, several different combinations of injection and ignition timings were classified as possible combustion regimes, and experiments were conducted to make clear the differences in combustion conditions attributable to these timings. Lambda and the EGR rate were also evaluated for achieving the desired performance, and indicated thermal efficiency of over 45% was obtained at IMEP of 0.95 MPa. It was found that a hydrogen engine with a high-pressure direct-injection system has a high potential for improving thermal efficiency and reducing NOx emissions.
Technical Paper

Experimental Analysis on Soot Formation Process In DI Diesel Combustion Chamber by Use of Optical Diagnostics

2002-03-04
2002-01-0893
Soot formation process inside the combustion chamber of an DI diesel engine is focused as a phenomenological basic scheme by using several optical diagnostics technique for the improvement of diesel exhaust emission. We have conducted the series of optical measurement research for the clarification of combustion field in an DI diesel engine. Then, this paper is a kind of review by adding the fuel vapor properties and particle image velocimetry (PIV) analysis with focusing the soot formation process. The experiments were carried out in a small sized high-speed DI diesel engine installed with an optical access view. The spray characteristics and its flow field in 2-D field were measured by laser sheet scattering (LIS) method and PIV scheme.
Technical Paper

Factors Limiting the Improvement in Thermal Efficiency of S. I. Engine at Higher Compression Ratio

1987-02-01
870548
An analysis of the factors that limit the improvement in thermal efficiency at higher compression ratios was performed with both thermodynamic calculation and experiment. The results showed that the major factors were cooling loss and unburned fuel. Both of these factors increase with smaller swept volume, larger S/V ratio combustion chamber, and lower engine speed and load. These effects explain the observation that thermal efficiency peaks at relatively low compression ratio.
Technical Paper

HCCI Combustion Characteristics of Hydrogen and Hydrogen-rich Natural Gas Reformate Supported by DME Supplement

2006-04-03
2006-01-0628
Hydrogen is expected to be a clean and energy-efficient fuel for the next generation of power sources because it is CO2-free and has excellent combustion characteristics. In this study, an attempt was made to apply Homogeneous Charge Compression Ignition (HCCI) combustion to hydrogen with the aim of achieving low oxides of nitrogen (NOx) emissions and high fuel economy with the assistance of the di-methyl-ether (DME) fuel supplement. As a result, HCCI combustion of hydrogen mixed with 25 vol% DME achieved approximately a 30% improvement in fuel economy compared with HCCI of pure DME and spark-ignited lean-burn combustion of pure hydrogen under almost zero NOx emissions and low hydrocarbon (HC) emissions. This is attributed to control of the combustion process to attain the optimum onset of combustion and to a reduction of cooling losses.
Technical Paper

Improvement of Spray and Combustion Process by Applying CO2 Gas Dissolved Fuel

2017-11-05
2017-32-0046
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
Technical Paper

Instantaneous Surface Temperature Measurement in Internal Combustion Engine Using Newly Developed Coaxial Type Thin-Film Temperature Sensor

2017-11-05
2017-32-0113
In order to establish standard method to evaluate cooling loss in combustion chamber of internal combustion engines based on measurement of instantaneous heat flux / wall temperature with higher response and accuracy than previously reported coaxial type thin-film temperature sensor by applying thin film fabrication technology based on PVD method (Physical Vapor Deposition method) which improved to realize higher responsiveness than the conventional sensor was developed by the authors, and it was confirmed that the sensor has sufficient durability in conditions in which the hydrogen jet and flame directly contacts surface of the sensor by thin-film material change. The influence of the improvement on the measurement accuracy was verified by numerical analysis including thermoproperty evaluation. In this report, the configuration of measurement system that can measure minute voltage from the sensor with low noise and high response is reported.
Technical Paper

Knocking Phenomena in a Rapid Compression and Expansion Machine

1992-02-01
920064
In this study, a rapid compression and expansion machine(RCEM) with a pancake combustion chamber was designed to investigate fundamentally on the knocking phenomena in spark ignition(S.I) engines. This RCEM is intended to simulate combustion in an actual engine. The homogeneous pre-mixture of n-pentane and air was charged into a quiescent atmosphere of the chamber. Then, the combustion field become simpler in this machine than it in a real S.I. engine. Also, the combustion phenomena, that is a cylinder pressure history, the behavior of flame propagation and so on, with high reproducibility are realized in this machine. The phenomena caught in this experiment were so-called low speed knocking. And, this knocking characteristics such as a knock intensity and a knock mass fraction were revealed by the cylinder pressure analysis varying the charge pressure and the equivalence ratio of the mixture, a compression ratio and an ignition timing.
Technical Paper

Laser Shadowgraphic Analysis Of Knocking In S.I. Engine

1984-01-01
845001
High-speed laser shadowgraph cinematography synchronized with measurement of the pressure in the combustion chamber was employed in order to observe the location and magnitude of autoignition that causes cylinder gas oscillation. The use of a laser light source enabled the exposure time to be set at 0.8 microseconds with a high film speed of 30,000 f.p.s. . An image processing system was also used to determine the exact location of autoignited gases. The results clarified that the location of autoignition varied cycle-by-cycle. In some cycles it occurred in the vicinity of the cylinder wall, in some cycles it originated in the middle of the end gas and just in front of the propagating flame. It was also made clear that the occurrence of autoignition at a traceknock spark timing did not always bring about an oscillation in the chamber gases in case where the speed of the autoignited gas did not exceed a certain value.
X