Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Compact Cooling System (CCS™): The Key to Meet Future Demands in Heavy Truck Cooling

2001-05-14
2001-01-1709
To meet future needs for heavy truck cooling, a novel high performance radial compact cooling system (CCS) was developed. Measurements with a prototype system were conducted in a component wind tunnel and with truck-installed systems in a climatic vehicular wind tunnel. The CSS is compared to conventional axial and side-by-side systems. In comparison with a conventional axial system, the performance per unit volume of the CCS is 42% higher, the noise level is about 6 dB lower and the power consumption of the radial fan is 70% of the axial fan leading to significant savings in fuel consumption.
Technical Paper

A Composite Approach to Reducing Abrasive Wear

1983-09-12
831375
“Today, wearing parts are regularly subjected to abnormal loading conditions. They must be able to accept these conditions without failure. In continuous operations, unscheduled downtime greatly increases maintenance costs, not to mention the cost of lost production. White iron castings offer premium abrasion resistance for many of these applications, but are often not used due to the possibility of brittle failure and the difficulty of mechanical attachment. This paper discusses the properties and applications of a composite of martensitic white iron and mild steel. This laminate will accept medium to high impact without loss of service failure, and can be installed by mechanical means or with welded attachment.”
Technical Paper

A Computer Cooling System Study of a Diesel Powered Truck for Control of Transient Coolant, Oil and Cab Temperatures

1982-02-01
821049
A Vehicle-Engine-Cooling (VEC) system computer simulation model was used to study the transient performance of control devices and their temperature settings on oil, coolant and cab temperatures. The truck used in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and aftercooler. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the VEC system computer simulation model. The control devices investigated were the standard thermostat, the Kysor fan-clutch and shutter system. The effect of shutterstat location on shutter performance along with thermostat, shutter and fan activation temperature settings were investigated for ambient temperatures of 32, 85 and 100°F.
Technical Paper

A Contact-Point Type Start of Injection Sensor for Diesel Engines

1985-09-01
851585
A simple contact-point based start of injection sensor has been developed for use in closed-loop injection timing control systems. The main element in this sensor is a highly durable thin film deposited by an advanced ion plating process. This sensor is expected to provide accurate detection of start of injection over all speed ranges. Sensor transient response in the feedback loop is also expected to be fast compared to other types of sensors. This detecting method can easily be applied to many kinds of injectors because of its simple structure. The durability has been confirmed by extensive testing.
Technical Paper

A Controllable Water Cooled Charge Air Cooler (WCCAC) for Diesel Trucks

2004-10-26
2004-01-2614
Water-cooled charge air cooling is being considered as part of various technology solutions in response to 2007 US, 2010 US, EU4 and EU5 emissions standards. As manufacturers determine appropriate engine and vehicle solutions to meet the upcoming emissions standards, charge air cooling requirements are increasing due to higher turbocharger outlet temperatures and pressures, higher EGR rates, and requests for intake manifold temperature control to manage combustion and exhaust temperatures. Valeo and EMP have collaborated on the development and testing of a water cooled charge air cooler (WCCAC), controlled by a 12 volt brushless motor coolant pump. The system design addresses material temperature limitations of air-air aluminum CAC's and has the potential to simplify the packaging of the air induction system.
Technical Paper

A Design Guide for Wet Multiple Plate Clutches on Forklift Truck Transmissions Considering Strength Balance between Friction Material and Mating Plate

2013-04-08
2013-01-0231
Wet multiple plate clutches consist of friction plates, on which a friction material is bonded, and mating plates that are plain metal plates. Since the frequency and the range of load in the field of forklift trucks vary widely and are more severe than those for passenger cars, the wet multiple plate clutches on forklift trucks are often damaged. Damaged clutches that were returned from the field typically had 3 types of symptoms: 1.Only the friction material was damaged, 2.Only the mating plates were deformed, 3.Both symptoms were observed. It was clear that the cause of these symptoms depended on the difference of the operating application and the strength criteria of each part. This showed that a design guide for wet multiple plate clutches considering the strength balance between the two parts according to the work application was required. The relevant flow chart of this design process was proposed.
Technical Paper

A Design Tool for Tuning and Optimizing Carburizing and Heat Treat Processes

2002-03-19
2002-01-1475
A software tool has been developed to aid designers and process engineers in the development and improvement of heat treat processes. This tool, DANTE™, combines metallurgical phase transformation models with mass diffusion, thermal and mechanical models to simulate the heating, carburization, quenching and tempering of steel parts. The technology behind the DANTE software and some applications are presented in this paper.
Technical Paper

A Design of Cooling Water Jacket Structure and an Analysis of Its Coolant Flow Characteristics for a Horizontal Diesel Engine

2011-09-13
2011-01-2187
In order to fulfill the technical requirements of a high-efficiency low-emissions off-road horizontal diesel engine, a unique design is proposed and optimized in this paper for the cooling water jacket structure with a forced-cooling closed-loop cooling system. The cooling water flow rate, temperature, and pressure at the inlet and several other critical locations of the cooling water jacket were measured and analyzed at different engine operating conditions for the water jacket designs. A numerical simulation model of the coolant flow and the cooling system was built and used to analyze the thermal/fluid characteristics of the coolant flow in the water jacket. The impact of different structural and packaging design parameters on coolant flow and heat transfer was investigated. The design deficiency of an original (earlier) design of the water jacket was pointed out and an improved design was proposed.
Technical Paper

A Lumped-Parameter Thermal Model for System Level Simulations of Hybrid Vehicles

2020-04-14
2020-01-0150
A lumped-parameter thermal network model, based on the analogy between heat transfer and electric current flow, is presented for hybrid powertrain cooling systems. In order to optimally select the powertrain components that are commercially viable and meet performance, emission, fuel economy and life targets, it is necessary to consider the influence of cooling architecture. Especially in electric and hybrid vehicles, temperature monitoring is important to increase power and torque utilization while preventing thermal damages. Detailed thermal models such as FEA and CFD are considered for component level assessments as they can locate thermal hotspots and identify possible design changes needed. However, for the system level analysis, the detailed numerical models are not suitable due to the requirement of high computation effort.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Technical Paper

A New Radically Different Oil to Water Heat Exchanger

1991-11-01
912717
Presenting a brand new approach to heat exchangers for engines, transmissions, hydraulic systems, etc. This new heat exchanger is made of only two pieces of circular extruded aluminum profiles: Core and shell. No soldering: The core and the shell is assembled by a minimum of automated work. In an oil to water cooling application, the active surface on the oil side of the core is enlarged by fins 0.2 mm thick, 0.3 mm spacing, and 3 mm high. The fins are made in unique production machines and enlarge the active surface area approximately five times compared to a conventional heat exchanger of the same dimensions. The principle utilizes the low pressure drop at laminar flow and avoids the disadvantage of low heat transfer after a certain laminar flow length. The result is approximately three times higher oil heat dissipation, combined with very low oil pressure drop, compared to conventional technique.
Journal Article

A Numerical Methodology to Test the Lubricant Oil Evaporation and Its Thermal Management-Related Properties Derating in Hydrogen-Fueled Engines

2023-09-15
Abstract Due to the incoming phase out of fossil fuels from the market in order to reduce the carbon footprint of the automotive sector, hydrogen-fueled engines are candidate mid-term solution. Thanks to its properties, hydrogen promotes flames that poorly suffer from the quenching effects toward the engine walls. Thus, emphasis must be posed on the heat-up of the oil layer that wets the cylinder liner in hydrogen-fueled engines. It is known that motor oils are complex mixtures of a number of mainly heavy hydrocarbons (HCs); however, their composition is not known a priori. Simulation tools that can support the early development steps of those engines must be provided with oil composition and properties at operation-like conditions. The authors propose a statistical inference-based optimization approach for identifying oil surrogate multicomponent mixtures. The algorithm is implemented in Python and relies on the Bayesian optimization technique.
Technical Paper

A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines - WHR System Development

2011-04-12
2011-01-0311
Waste heat recovery (WHR) has been recognized as a promising technology to achieve the fuel economy and green house gas reduction goals for future heavy-duty (HD) truck diesel engines. A Rankine cycle system with ethanol as the working fluid was developed at AVL Powertrain Engineering, Inc. to investigate the fuel economy benefit from recovering waste heat from a 10.8L HD truck diesel engine. Thermodynamic analysis on this WHR system demonstrated that 5% fuel saving could be achievable. The fuel economy benefit can be further improved by optimizing the design of the WHR system components and through better utilization of the available engine waste heat. Although the WHR system was designed for a stand-alone system for the laboratory testing, all the heat exchangers were sized such that their heat transfer areas are equivalent to compact heat exchangers suitable for installation on a HD truck diesel engine.
Technical Paper

A Report on the Field Test Performance of a Soybean-Based Hydraulic Oil

1998-09-14
982005
Despite the best preventative measures, ruptured hoses, spills and leaks do occur with the use of all hydraulic equipment. Although these releases do not usually produce an RCRA (Resource Conservation and Recovery Act) regulated waste, they are often reportable events. Clean-up and subsequent administrative procedures involve additional costs, labor, and work delays. Concerns about these releases, especially when they involve Sandia National Laboratories, New Mexico (SNL) vehicles hauling waste on public roads, prompted their Fleet Services Department (FS) to seek an alternative to conventional petroleum-based hydraulic fluids. Since 1996, SNL has participated in a pilot program, along with the University of Northern Iowa (UNI) Ag-Based Industrial Lubricants (ABIL) Research Program and selected vehicle manufacturers, to field test in twenty of its vehicles, hydraulic fluid produced from soybean oil.
Technical Paper

A Review of Computer-Enhanced Shot Peening

1996-08-01
961750
Shot peening has been used for half a century to combat metal fatigue and stress corrosion cracking in highly loaded machines and structures. Despite its success as a “fix” for service problems, there has been a reluctance to specify shot peening in new designs. This has been based on a lack of confidence, the uniformity and repeatability of the process. Much of this has been overcome with the introduction of computer-enhanced peening equipment, which monitors and controls key process parameters. Computer enhanced shot peening and its equipment are reviewed with emphasis on what it does and does not do. The successful marriage of conventional and computer enhanced peening is used for critical aircraft, turbine, nuclear power plant, and truck transmissions and its use promises to grow.
Technical Paper

A Secondary De-Aeration Circuit for an Engine Cooling System with Atmospheric Recovery Bottle to Improve De-Aeration

2014-09-30
2014-01-2342
In any engine cooling system, de-aeration capability of the system plays a very critical role to avoid over heating of an engine. In general, with recovery bottle engine cooling system there is one vent hose from radiator pressure cap to the recovery bottle and coolant in the bottle is exposed to atmospheric pressure. From this vent hose air bubbles will move to recovery bottle from the engine and radiator when pressure in the system exceeds pressure cap setting. With this arrangement, de-aeration from the engine will happen when thermostat opens only and till that time air bubbles will be in the engine only and in this time there will be chance of overheating at some critical conditions because of air pockets in to the engine water jacket and the entrained air in the cooling circuit. Also, secondly 100 % initial filling cannot be achieved.
Technical Paper

A Simulation Study of Optimal Integration of a Rankine Cycle Based Waste Heat Recovery System into the Cooling System of a Long-Haul Heavy Duty Truck

2018-09-10
2018-01-1779
As a promising solution to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, organic Rankine cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from automobile industry in recent years. The most attractive concept of ORC-based WHR system is the conversion of the thermal energy of exhaust gas recirculation (EGR) and exhaust gas from Tailpipe (EGT) to kinetic energy which is provided to the engine crankshaft. Due to a shift of the operating point of the engine by applying WHR system, the efficiency of the overall system increases and the fuel consumption reduces respectively. However, the integration of WHR system in truck is challenging by using engine cooling system as heat sink for Rankine cycle. The coolant mass flow rate influences strongly on the exhaust gas bypass which ensures a defined subcooling after condenser to avoid cavitation of pump.
Technical Paper

A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks

2014-04-01
2014-01-0678
In heavy duty (HD) trucks cruising on expressway, about 60% of input fuel energy is wasted as losses. So it is important to recover them to improve fuel economy of them. As a waste heat recovery system, a Rankine cycle generating system was selected. And this paper mainly reports it. In this study, engine coolant was determined as main heat source, which collected energies of an engine cooling, an EGR gas and an exhaust gas, for collecting stable energy as much as possible. And the exergy of heat source was raised by increase coolant temperature to 105 deg C. As for improving the system efficiency, saturation temperature difference was expanded by improving performance of heat exchanger and by using high pressure turbine. And a recuperator which exchanges heat in working fluid between expander outlet and evaporator inlet was installed to recover the heat of working fluid at turbine generator. Then a working fluid pump was improved to reduce power consumption of the system.
Technical Paper

A Study on the Reformed-Methanol Engine

1986-09-01
861237
Selection of the optimum catalyst for the reformation of methanol, and static/dynamic characteristics of a spark ignition engine fueld with both gasoline and methanol reformed gas were studied. Tube test results on reforming characteristics show that a catalyst made of a base metal works best. A methanol reformer with an exhaust gas heat exchanger was used. Results show that the increase of reformed gas ratio increases the stability of combustion and extends the lean limit. It also improves thermal efficiency, owing to the reduced duration of combustion. Moreover, responses of Pmax during sudden opening/closing of the throttle valve were studied. Results indicate that the higher the reformed gas ratio, the quicker the Pmax response and the smoother the combustion process.
Technical Paper

A Systematic Approach of Cooling System Design, Development and Application for Commercial Vehicles

2013-04-08
2013-01-1294
A methodology for design and development of commercial vehicle cooling system is derived with an objective to minimize part cost, engineering resources and time to market. This approach is very useful in companies with more variant of engines and vehicles. For this it is identified to have a common cooling system for a set of engines. A systematic approach to develop cooling system based on heat rejection is conceptualised. Engines are classified based on heat loads in to various groups. The cooling package selected for a particular group is independent of type of vehicle (bus or truck), cab (day, sleeper, FES or FBS), Type of drive (LHD or RHD), Emission norm (BSIII or BSIV) and fuel (Diesel or CNG). These packages will cover up the entire range of vehicles and engines. The packaging space available for each group is derived and the cooling package size is finalised. Fan and fan pulley options are listed based on air flow and fuel efficiency requirements.
X