Refine Your Search

Topic

Search Results

Technical Paper

Acquisition and Interpretation of Diesel Engine Heat Release Data

1985-10-01
852068
The technique of using cylinder pressure data for diagnosing the combustion process in a reciprocating internal combustion engine has been used for some time. Much of the early work, however, was qualitative comparisons of the heat release rate diagrams. Only recently have efforts been made to reduce the heat release diagrams to functional or numerical representations which could be used to make fuel-to-fuel and engine-to-engine comparisons. This paper describes work in which cylinder pressure measurements were taken from an operating diesel engine using a high-speed data acquisition system. Combustion chamber pressure measurements were made at approximately 1.0- degree increments over several engine cycles using a real-time data acquisition system. The pressure data were used to calculate apparent heat release and indicated horsepower. Both radiative and convective heat transfer computations were included in the calculational procedures.
Technical Paper

Cetane Effect on Diesel Ignition Delay Times Measured in a Constant Volume Combustion Apparatus

1995-10-01
952352
The key feature of diesel fuel ignition quality is ignition delay time. In the American Society for Testing and Materials standard test for cetane number measurement, (ASTM D 613) the ignition delay time is held constant while the compression ratio is varied until ignition occurs at the set time. On the other hand, commercial diesel engines have set compression ratios and therefore, the ignition delay time varies with the cetane number of the fuel. The shorter this delay time, the wider the time window over which the combustion processes are spread. This leads to a more controlled heat release rate and pressure rise, resulting in prevention of diesel knock and in lowering of emissions. High cetane fuels exhibit short ignition delay times. The Constant Volume Combustion Apparatus (CVCA) precisely measures the ignition delay time of fuels. This study investigates the CVCA as a supplementary tool for characterization of diesel fuel ignition quality under a variety of conditions.
Technical Paper

Combustion and Emissions Characteristics of Minimally Processed Methanol in a Diesel Engine Without Ignition Assist

1994-03-01
940326
Mixtures of methanol, water and heavier alcohols, simulating “raw’ methanol at various levels of processing, were tested in a constant volume combustion apparatus (CVCA) and in a single-cylinder, direct-injection diesel engine. The ignition characteristics determined in the CVCA indicated that the heavier alcohols have beneficial effects on the auto-ignition quality of the fuels, as compared to pure methanol. Water, at up up to 10 percent by volume, has little effect on the ignition quality. In all cases, however, the cetane numbers of the alcohol mixtures were very low. The same fuels were tested in a single cylinder engine, set-up in a configuration similar to current two-valve DI engines, except that the compression ratio was increased to 19:1. Pure methanol and five different blends of alcohols and water were tested in the engine at five different speed-load conditions.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Single-Cylinder Engine Optimization for Water-in-Fuel Miscroemulsions

1983-02-01
830553
The increased use of diesel-powered equipment in underground mines has prompted interest in reducing their exhaust pollutants. Control of particulate emissions without substantial penalties in other emissions or fuel consumption is necessary. This paper describes test results on a prechaaber, naturally-aspirated, four-cycle diesel engine in which two different concentrations of water-in-fuel emulsions were run. The independent variables comprising the test matrix were fuel, speed, load, injection timing, injection rate, and compression ratio. The dependent variables of the experiment included particulate and gaseous emissions and engine thermal efficiency. Regression analysis was performed on the data to determine how particulate emissions were affected by fuel and engine parameters. Results of this analysis indicated that substantial reductions in particulate emissions could be obtained by utilizing water-in-fuel emulsions.
Technical Paper

Diesel Engine Injection and Combustion of Slurries of Coal, Charcoal, and Coke in Diesel Fuel

1984-02-01
840119
Slurry fuels of various forms of solids in diesel fuel were developed and evaluated for their relative potential as fuel for diesel engines. Thirteen test fuels with different solids concentrations were formulated using eight different materials. The injection and atomization characteristics (transient diesel sprays) of the test fuels were examined in a spray bomb in which a nitrogen atmosphere was maintained at high pressure and temperature, 4.2 MPa and 480°C, respectively. The diagnostics of the sprays included high-speed movies and high-resolution still photographs. The slurries were also tested in a single-cylinder CLR engine in both direct-injection and prechamber configurations. The data included the normal performance parameters as well as heat release rates and emissions. In most cases, the slurries performed very much like the baseline fuel. The combustion data indicated that a large fraction (90 percent or more) of the solids were burning in the engine.
Technical Paper

Diesel Fuel Ignition Quality as Determined in a Variable Compression Ratio, Direct-Injection Engine

1987-02-01
870585
A single-cylinder, variable-compression ratio, direct-injection diesel engine was designed and constructed to study the ignition quality of seventeen different test fuels, ranging from the primary reference fuels to a vegetable oil. The objective of the work was to compare the ignition quality rating of the fuels using the standard cetane rating technique to ratings obtained in the test engine. The ignition delay times have been measured as functions of the engine speed, load, and compression ratio. As in the standard cetane rating technique, injection timing was adjusted so that combustion started at top dead center. This was accomplished by adjusting the injection timing as the speed, load, and compression ratio were varied. The resulting data is plotted as the ignition delay times versus compression ratio at the various speed-load conditions.
Technical Paper

Dual Fuel Injection Nozzle for Methanol Fueled Compression Ignition Engine Operation

1991-10-01
912357
The objective of the work reported in this paper was to develop and demonstrate an injection nozzle which can be used to inject both diesel fuel and methanol in to a direct injection diesel engine. The constraints on the nozzle were that it must provide acceptable fuel metering and atomization for the diesel fuel so that the engine can be operated at rated load on diesel fuel alone, or operate at full load with the diesel fuel as a pilot for the methanol. An additional constraint was that the nozzle design was to be easily adaptable to the existing injection nozzle so that engine head modifications are not required. The initial design was evaluated in a constant volume test chamber in which the pressure was varied from atmospheric to engine compression pressures.
Technical Paper

EPA HDEWG Program - Test Fuel Development

2000-06-19
2000-01-1857
In 1995, US Environmental Protection Agency (EPA) formed the Heavy-Duty Engine Working Group (HDEWG). The objective of the group was to assess the role diesel fuel could play in meeting exhaust emission standards proposed for model year 2004+ heavy-duty diesel engines. The group developed a three-phase program to achieve this objective. This paper describes the development of test fuels used in Phase 2 of the EPA HDEWG Program to investigate the effect of fuel properties on heavy-duty diesel engine emissions. It discusses the design of the fuel matrix, reviews the process of test fuel preparation and presents the results of a multi-laboratory fuel analysis program. Fuel properties selected for investigation included density, cetane number, mono- and polyaromatic hydrocarbon content.
Technical Paper

Effects of Exhaust Gas Recirculation on the Degradation Rates of Lubricating Oil in a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3574
The specific goal of this project was to determine if there is a difference in the lube oil degradation rates in a heavy-duty diesel engine equipped with an EGR system, as compared to the same configuration of the engine, but minus the EGR system. A secondary goal was to develop FTIR analysis of used lube oil as a sensitive technique for rapid evaluation of the degradation properties of lubricants. The test engine selected for this work was a Caterpillar 3176 engine. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to meet the 2004 emissions standards. The most significant changes in the lubricant occurred during the first 50-100 hours of operation. The results clearly demonstrated that the use of EGR has a significant impact on the degradation of the engine lubricant.
Technical Paper

Effects of PuriNOx™ Water-Diesel Fuel Emulsions on Emissions and Fuel Economy in a Heavy-Duty Diesel Engine

2002-10-21
2002-01-2891
The engine-out emissions and fuel consumption rates for a modern, heavy-duty diesel engine were compared when fueling with a conventional diesel fuel and three water-blend-fuel emulsions. Four different fuels were studied: (1) a conventional diesel fuel, (2) PuriNOx,™ a water-fuel emulsion using the same conventional diesel fuel, but having 20% water by mass, and (3,4) two other formulations of the PuriNOx™ fuel that contained proprietary chemical additives intended to improve combustion efficiency and emissions characteristics. The emissions data were acquired with three different injection-timing strategies using the AVL 8-Mode steady-state test method in a Caterpillar 3176 engine, which had a calibration that met the 1998 nitrogen oxides (NOX) emissions standard.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

Engine and Constant Volume Bomb Studies of Diesel ignition and Combustion

1988-10-01
881626
Changing fuel quality, increasingly stringent exhaust emission standards, demands for higher efficiency, and the trend towards higher specific output, all contribute to the need for a better understanding of the ignition process in diesel engines. In addition to the impact on the combustion process and the resulting performance and emissions, the ignition process controls the startability of the engine, which, in turn, governs the required compressions ratio and several of the other engine design parameters. The importance of the ignition process is reflected in the fact that the only combustion property that is specified for diesel fuel is the ignition delay time as indicated by the cetane number. The objective of the work described in this paper was to determine the relationship between the ignition process as it occurs in an actual engine, to ignition in a constant volume combustion bomb.
Technical Paper

Fuel Effects on Combustion in a Two-Stroke Diesel Engine

1985-10-01
852104
Combustion studies on various potential alternative fuels were performed for the U.S. Array Belvoir Research and Development Center in a two-stroke heavy duty diesel engine. One cylinder of the engine was instrumented with a pressure transducer. A high-speed data acquisition system was used to acquire cylinder pressure histories synchronously with crankangle. The heat release diagrams, along with the calculated combustion efficiencies of the fuels were compared to a referee grade diesel fuel. The calculated and measured combustion parameters include heat release centroids, cumulative heat release, peak pressure, indicated horsepower, peak rate of pressure rise, indicated thermal efficiency, energy input, and ignition delay. Regression analyses were performed between various fuel properties and the calculated and measured combustion performance parameters. The fuel properties included specific gravity, cetane number, viscosity, boiling point distribution.
Technical Paper

Heavy-Duty Diesel Engine Emissions Tests Using Special Biodiesel Fuels

2005-10-24
2005-01-3671
A 2003 heavy-duty diesel engine (2002 emissions level) was used to test a representative biodiesel fuel as well as the methyl esters of several different fatty acids. The fuel variables included degree of saturation, the oxygen content, and carbon chain length. In addition, two pure normal paraffins with the corresponding chain lengths of two of the methyl esters were also tested to determine the impact of chain length. The dependent variables were the NOx and the particulate emissions (PM). The results indicated that the primary fuel variable affecting the emissions is the oxygen content. The emissions results showed that the highest oxygen content test fuel had the lowest emissions of both NOx and PM. As compared to the baseline diesel fuel the NOx emissions were reduced by 5 percent and the PM emissions were reduced by 83 percent.
Technical Paper

Homogeneous Charge Compression Ignition of Diesel Fuel

1996-05-01
961160
A single-cylinder, direct-injection diesel engine was modified to operate on compression ignition of homogenous mixtures of diesel fuel and air. Previous work has indicated that extremely low emissions and high efficiencies are possible if ignition of homogeneous fuel-air mixtures is accomplished. The limitations of this approach were reported to be misfire and knock. These same observations were verified in the current work. The variables examined in this study included air-fuel ratio, compression ratio, fresh intake air temperature, exhaust gas recirculation rate, and intake mixture temperatures. The results suggested that controlled homogeneous charge compression ignition (HCCI) is possible. Compression ratio, EGR rate, and air fuel ratio are the practical controlling factors in achieving satisfactory operation. It was found that satisfactory power settings are possible with high EGR rates and stoichiometric fuel-air mixtures.
Technical Paper

Identification of Chemical Changes Occurring During the Transient Injection of Selected Vegetable Oils

1993-03-01
930933
Four different vegetable oils, degummed soybean, once refined cottonseed, peanut and sunflower oils, were injected into a high-pressure, high-temperature environment of nitrogen. The environment was controlled to resemble, thermodynamically, conditions present in a diesel engine at the time of fuel injection. Samples were removed from the sprays of these oils while they were being injected. A sonic, water-cooled probe and a cold trap were used to collect the samples. Chemical analyses of the samples indicated that significant chemical changes occur in the oils during the injection process. The major change is the formation of low-molecular weight compounds from the C18:2 and C18:3 fatty acids.
Technical Paper

Ignition Delay as Determined in a Variable-Compression Ratio Direct-Injection Diesel Engine

1987-11-01
872036
A variable-compression ratio, direct-injection diesel engine (VCR) has been designed and assembled at Southwest Research Institute with the intention of examining the current procedures for rating the ignition quality of diesel fuels and the meaning of ignition delay as an indicator of ignition and combustion quality. Using a slightly modified ASTM D 613 procedure, the engine has been used to rate the ignition quality of 43 different test fuels. The ratings obtained in the VCR engine are compared to the corresponding rating obtained using the standard cetane rating procedure. Some of the problems associated with the standard procedure became apparent during these experiments. The experimental results are discussed in terms of the problems and the advantages of a proposed VCR-based rating procedure.
Technical Paper

Injection Pressure and Intake Air Density Effects on Ignition and Combustion in a 4-Valve Diesel Engine

1994-10-01
941919
Diesel engine optimization for low emissions and high efficiency involves the use of very high injection pressures. It was generally thought that increased injection pressures lead to improved fuel air mixing due to increased atomization in the fuel jet. Injection experiments in a high-pressure, high-temperature flow reactor indicated, however, that high injection pressures, in excess of 150 MPa, leads to greatly increased penetration rates and significant wall impingement. An endoscope system was used to obtain movies of combustion in a modern, 4-valve, heavy-duty diesel engine. Movies were obtained at different speeds, loads, injection pressures, and intake air pressures. The movies indicated that high injection pressure, coupled with high intake air density leads to very short ignition delay times, ignition close to the nozzle, and burning of the plumes as they traverse the combustion chamber.
Technical Paper

Nox Control in Heavy-Duty Diesel Engines - What is the Limit?

1998-02-23
980174
Methods to reduce direct injected diesel engine emissions in the combustion chamber will be discussed in this paper. The following NOx emission reduction technologies will be reviewed: charge air chilling, water injection, and exhaust gas recirculation (EGR). Emphasis will be placed on the development of an EGR system and the effect of EGR on NOx and particulates. The lower limit of NOx that can be obtained using conventional diesel engine combustion will be discussed. Further reductions in NOx may require changing the combustion process from a diffusion flame to a homogeneous charge combustion system.
Technical Paper

On-Board Fuel Property Classifier for Fuel Property Adaptive Engine Control System

2006-04-03
2006-01-0054
This paper explores the possibility of on-board fuel classification for fuel property adaptive compression-ignition engine control system. The fuel classifier is designed to on-board classify the fuel that a diesel engine is running, including alternative and renewable fuels such as bio-diesel. Based on this classification, the key fuel properties are provided to the engine control system for optimal control of in-cylinder combustion and exhaust treatment system management with respect to the fuel. The fuel classifier employs engine input-output response characteristics measured from standard engine sensors to classify the fuel. For proof-of-concept purposes, engine input-output responses were measured for three different fuels at three different engine operating conditions. Two neural-network-based fuel classifiers were developed for different classification scenarios. Of the three engine operating conditions tested, two conditions were selected for the fuel classifier to be active.
X