Refine Your Search

Topic

Search Results

Technical Paper

A Fast and Reliable CFD Approach to Design Hydrogen SI Engines for Industrial Applications

2023-06-26
2023-01-1208
SI engines fueled with hydrogen represent a promising powertrain solution to meet the ambitious target of carbon-free emissions at the tailpipe. Therefore, fast and reliable numerical tools can significantly support the automotive industry in the optimization of such technology. In this work, a 1D-3D methodology is presented to simulate in detail the combustion process with minimal computational effort. First, a 1D analysis of the complete engine cycle is carried out on the user-defined powertrain configuration. The purpose is to achieve reliable boundary conditions for the combustion chamber, based on realistic engine parameters. Then, a 3D simulation of the power-cycle is performed to mimic the combustion process. The flow velocity and turbulence distributions are initialized without the need of simulating the gas exchange process, according to a validated technique.
Technical Paper

A LES Study on the Evolution of Turbulent Structures in Moving Engine Geometries by an Open-Source CFD Code

2014-04-01
2014-01-1147
The dynamics and evolution of turbulent structures inside an engine-like geometry are investigated by means of Large Eddy Simulation. A simplified configuration consisting of a flat-top cylinder head with a fixed, axis-centered valve and low-speed piston has been simulated by the finite volume CFD code OpenFOAM®; the standard version of the software has been extended to include the compressible WALE subgrid-scale model, models for the generation of synthetic turbulence, some improvements to the mesh motion strategy and algorithms for LES data post-processing. In order to study both the initial transient and the quasi- steady operating conditions, ten complete engine cycles have been simulated. Phase and spatial averages have been performed over cycles three to ten in order to extract first and second moment of velocity; these quantities have then been used to validate the numerical procedure by comparison against experimental data.
Technical Paper

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions under Different IC Engine Operating Conditions

2019-09-09
2019-24-0147
The accurate prediction of pollutant emissions generated by IC engines is a key aspect to guarantee the respect of the emission regulation legislation. This paper describes the approach followed by the authors to achieve a strict numerical coupling of two different 1D modeling tools in a co-simulation environment, aiming at a reliable calculation of engine-out and tailpipe emissions. The main idea is to allow an accurate 1D simulation of the unsteady flows and wave motion inside the intake and exhaust systems, without resorting to an over-simplified geometrical discretization, and to rely on advanced thermodynamic combustion models and kinetic sub-models for the calculation of cylinder-out emissions. A specific fluid dynamic approach is then used to track the chemical composition along the exhaust duct-system, in order to evaluate the conversion efficiency of after-treatment devices, such as TWC, GPF, DPF, DOC, SCR and so on.
Technical Paper

A Quasi-3D Model for the Simulation of the Unsteady Flows in I.C. Engine Pipe Systems

2012-04-16
2012-01-0675
Increasing demands on the capabilities of engine simulation and the ability to accurately predict both performance and acoustics has lead to the development of several numerical tools to help engine manufacturers during the prototyping stage. The aid of CFD tools (3D and 1D) can remarkably reduce the duration and the costs of this stage. The need of achieving good accuracy, along with acceptable computational runtime, has given the spur to the development of a geometry based quasi-3D approach. This is designed to model the acoustics and the fluid dynamics of both intake and exhaust system components used in internal combustion engines. Models of components are built using a network of quasi-3D cells based primarily on the geometry of the system. The solution procedure is based on an explicitly time marching staggered grid approach making use of a flux limiter to prevent numerical instabilities.
Technical Paper

An Extension of the Dynamic Mesh Handling with Topological Changes for LES of ICE in OpenFOAM®

2015-04-14
2015-01-0384
The paper focuses on the development of a mesh moving method based on non-conformal topologically changing grids applied to the simulation of IC engines, where the prescribed motion of piston and valves is accomplished by rigidly translating the sub-domain representing the moving component. With respect to authors previous work, a more robust and efficient algorithm to handle the connectivity of non-conformal interfaces and a mesh-motion solver supporting multiple layer addition/removal of cells, to decouple the time-step constraints of the mesh motion and of the fluid dynamics, has been implemented as a C++ library to extend the already existing classes for dynamic mesh handling of the finite-volume, open-source CFD code OpenFOAM®. Other new features include automatic decomposition of large multiple region domains to preserve processors load balance with topological changes for parallel computations and additional tools for automatic preprocessing and case setup.
Technical Paper

Analysis and Optimization of Metallic Based Substrates for After-Treatment System by Means of Full-Scale CFD Simulations and Experiments

2023-04-11
2023-01-0369
The tightening trend of regulations on the levels of admitted pollutant emissions has given a great spur to the research work in the field of combustion and after-treatment devices. Despite the improvements that can be applied to the development of the combustion process, pollutant emissions cannot be reduced to zero; for this reason, the aftertreatment system will become a key component in the path to achieving near-zero emission levels. This study focuses on the numerical analysis and optimization of different metallic substrates, specifically developed for three-way catalyst (TWC) and Diesel oxidation catalyst (DOC) applications, to improve their thermal efficiency by reducing radial thermal losses through the outer mantle. The optimization process relies on computational fluid dynamics (CFD) simulations supported by experimental measurements to validate the numerical models carried out under uncoated conditions, where chemical reactions do not occur.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
Technical Paper

CFD Investigation of the Impact of Electrical Heating on the Light-off of a Diesel Oxidation Catalyst

2018-04-03
2018-01-0961
In the last years, as a response to the more and more restrictive emission legislation, new devices (SRC, DOC, NOx-trap, DPF) have been progressively introduced as standard components of modern after-treatment system for Diesel engines. In addition, the adoption of electrical heating is nowadays regarded with interest as an effective solution to promote the light-off of the catalyst at low temperature, especially at the start-up of the engine and during the low load operation of the engine typical of the urban drive. In this work, a state-of-the-art 48 V electrical heated catalyst is considered, in order to investigate its effect in increasing the abatement efficiency of a standard DOC. The electrical heating device considered is based on a metallic support, arranged in a spiral layout, and it is heated by the Joule effect due to the passage of the electrical current.
Technical Paper

Combined Experimental and Numerical Investigation of the ECN Spray G under Different Engine-Like Conditions

2018-04-03
2018-01-0281
A detailed understanding of Gasoline Direct Injection (GDI) techniques applied to spark-ignition (SI) engines is necessary as they allow for many technical advantages such as increased power output, higher fuel efficiency and better cold start performances. Within this context, the extensive validation of multi-dimensional models against experimental data is a fundamental task in order to achieve an accurate reproduction of the physical phenomena characterizing the injected fuel spray. In this work, simulations of different Engine Combustion Network (ECN) Spray G conditions were performed with the Lib-ICE code, which is based on the open source OpenFOAM technology, by using a RANS Eulerian-Lagrangian approach to model the ambient gas-fuel spray interaction.
Technical Paper

Comparison of Numerical and System Dynamics Methods for Modeling Wave Propagation in the Intake Manifold of a Single-Cylinder Engine

2013-09-08
2013-24-0139
The automotive industry is striving to adopt model-based engine design and optimization procedures to reduce development time and costs. In this scenario, first-principles gas dynamic models predicting the mass, energy and momentum transport in the engine air path system with high accuracy and low computation effort are extremely important today for performance prediction, optimization and cylinder charge estimation and control. This paper presents a comparative study of two different modeling approaches to predict the one-dimensional unsteady compressible flow in the engine air path system. The first approach is based on a quasi-3D finite volume method, which relies on a geometrical reconstruction of the calculation domain using networks of zero-dimensional elements. The second approach is based on a model-order reduction procedure that projects the nonlinear hyperbolic partial differential equations describing the 1D unsteady flow in engine manifolds onto a predefined basis.
Technical Paper

Development and Application of a Quasi-3D Model for the Simulation of Radial Compressors of Turbochargers for Internal Combustion Engines

2019-09-09
2019-24-0187
In this work the 3Dcell method, a quasi3D approach developed by the Internal Combustion Engine Group at Politecnico di Milano, has been extended and applied to the fluid dynamic simulation of turbocharging devices for internal combustion engines, focusing on the compressor side. The 3Dcell is based on a pseudo-staggered leapfrog method applied to the governing equation of a 1D problem arbitrarily oriented in space. The system of equations is solved referring to the relative system in the rotating zone, whereas the absolute reference system has been used elsewhere. The vaneless diffuser has been modelled resorting to the conservation of the angular momentum of the flow stream in the tangential direction, combined with the solution of the momentum equation in the radial direction.
Technical Paper

Development of Fully-Automatic Parallel Algorithms for Mesh Handling in the OpenFOAM®-2.2.x Technology

2013-09-08
2013-24-0027
The current development to set up an automatic procedure for automatic mesh generation and automatic mesh motion for internal combustion engine simulation in OpenFOAM®-2.2.x is here described. In order to automatically generate high-quality meshes of cylinder geometries, some technical issues need to be addressed: 1) automatic mesh generation should be able to control anisotropy and directionality of the grid; 2) during piston and valve motion, cells and faces must be introduced and removed without varying the overall area and volume of the cells, to avoid conservation errors. In particular, interpolation between discrete fields is frequent in computational physics: the use of adaptive and non-conformal meshes necessitates the interpolation of fields between different mesh regions. Interpolation problems also arise in areas such as model coupling, model initialization and visualisation.
Technical Paper

Direct Evaluation of Turbine Isentropic Efficiency in Turbochargers: CFD Assisted Design of an Innovative Measuring Technique

2019-04-02
2019-01-0324
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and Diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary to assess a better understanding of its performance. The availability of experimental information on turbocharger steady flow performance is an essential requirement to optimize the engine-turbocharger matching, which is usually achieved by means of simulation models. This aspect is even more important when referred to the turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine.
Technical Paper

Experimental Validation of Combustion Models for Diesel Engines Based on Tabulated Kinetics in a Wide Range of Operating Conditions

2017-09-04
2017-24-0029
Computational fluid dynamics represents a useful tool to support the design and development of Heavy Duty Engines, making possible to test the effects of injection strategies and combustion chamber design for a wide range of operating conditions. Predictive models are required to ensure accurate estimations of heat release and the main pollutant emissions within a limited amount of time. For this reason, both detailed chemistry and turbulence chemistry interaction need to be included. In this work, the authors intend to apply combustion models based on tabulated kinetics for the prediction of Diesel combustion in Heavy Duty Engines. Four different approaches were considered: well-mixed model, presumed PDF, representative interactive flamelets and flamelet progress variable. Tabulated kinetics was also used for the estimation of NOx emissions.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Technical Paper

Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications

2017-09-04
2017-24-0026
The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
Technical Paper

Heat Transfer Analysis of Catalytic Converters during Cold Starts

2019-09-09
2019-24-0163
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced.
Technical Paper

Impact of Ultra Low Thermal Inertia Manifolds on Emission Performance

2007-04-16
2007-01-0935
In order to fulfill the more and more stringent emission levels (Euro V, SULEV…), catalytic converter light-off time has to be reduced as much as possible. Consequently, all the parts upstream of the catalytic converter have to be designed in order to minimize the gas heat loss. As a matter of fact, considering the emission performance, all components of the hot end contribute to a better after-treatment. In this study, we focus on the exhaust manifold, that has a major contribution to the thermal mass upstream of the catalyst. The study carried out aims at highlighting the impact of fabricated manifold length and thickness on emissions and engine performance. Several manifold designs, dedicated to different naturally aspirated gasoline engine applications, have been tested on a dynamic engine bench or chassis dyno. Emission results were also supported by temperature measurements.
Technical Paper

Integrated 1D-3D Fluid Dynamic Simulation of a Turbocharged Diesel Engine with Complete Intake and Exhaust Systems

2010-04-12
2010-01-1194
This paper describes a detailed analysis of the unsteady flows in the intake and exhaust systems of a modern four-cylinder, turbocharged Diesel engine by means of advanced numerical tools and experimental measurements. In particular, a 1D-3D integrated fluid dynamic model, based on the GASDYN (1D) and Lib-ICE (3D) codes, has been developed and applied for the schematization of the geometrical domain and the prediction of the wave motion in the whole intake and the exhaust systems, including the air cleaner, the intercooler, the after-treatment devices and the silencers. Firstly, a detailed 1D simulation has been carried out to predict the pressure pulses, average pressures and temperatures in several cross-sections of the pipe systems for different speeds and loads, considering the complex geometry of the air filter, the intake manifold, the intercooler and the exhaust manifold.
X