Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Finite Element Lower Extremity and Pelvis Model for Predicting Bone Injuries due to Knee Bolster Loading

2004-06-15
2004-01-2130
Injuries to the knee-thigh-hip (KTH) complex in frontal motor vehicle crashes are of substantial concern because of their frequency and potential to result in long-term disability. Current frontal impact Anthropometric Test Dummies (ATDs) have been shown to respond differently than human cadavers under frontal knee impact loading and consequently current ATDs (and FE models thereof) may lack the biofidelity needed to predict the incidence of knee, thigh, and hip injuries in frontal crashes. These concerns demand an efficient and biofidelic tool to evaluate the occurrence of injuries as a result of KTH loading in frontal crashes. The MADYMO human finite element (FE) model was therefore adapted to simulate bone deformation, articulating joints and soft tissue behavior in the KTH complex.
Technical Paper

A Finite Element Model of Region-Specific Response for Mild Diffuse Brain Injury

2009-11-02
2009-22-0007
It is well known that rotational loading is responsible for a spectrum of diffuse brain injuries spanning from concussion to diffuse axonal trauma. Many experimental studies have been performed to understand the pathological and biomechanical factors associated with diffuse brain injuries. Finite element models have also been developed to correlate experimental findings with intrinsic variables such as strain. However, a paucity of studies exists examining the combined role of the strain-time parameter. Consequently, using the principles of finite element analysis, the present study introduced the concept of sustained maximum principal strain (SMPS) criterion and explored its potential applicability to diffuse brain injury. An algorithm was developed to determine if the principal strain in a finite element of the brain exceeded a specified magnitude over a specific time interval.
Technical Paper

Advancements in Crash Sensing

2000-11-01
2000-01-C036
The crash modes that occur each day on streets and highways have not changed dramatically over the past 50 years. The need to better understand those crash modes and their relation to rapidly emerging, tailorable restraint systems has intensified recently. The algorithms necessary for predicting a deployment event are based on an approach of coupling the occupant kinematics in a crash to the sensing technology that will activate the restraint system. This paper describes methods of computer modeling, occupant sensing and vehicle crash dynamics to define a crash sensing system that reacts to a complex set of input conditions to invoke an effective restraint response.
Technical Paper

Age-Specific Pediatric Cervical Spine Biomechanical Responses: Three-Dimensional Nonlinear Finite Element Models

1997-11-12
973319
In this study, three-dimensional nonlinear finite element models of age-specific one year old, three year old, and six year old pediatric human cervical spine (C4-C5-C6) structures were developed. Their biomechanical responses were compared with the adult human cervical spine behavior under different loadings and at all load levels. The adult human cervical spine model was constructed from close-up computed tomography sections in the axial and sagittal planes, and sequential anatomic cryomicrotome sections. The adult model was validated with experimental moment-rotation data under flexion-extension and compression by correlating bilateral strains in the vertebral body and the lateral masses, and the force-deflection responses with experiments conducted in our laboratory. The adult model was modified to create one, three and six year old pediatric spines by incorporating the local geometrical and material characteristics of the developmental anatomy.
Technical Paper

Analysis of Force Mitigation by Boots in Axial Impacts using a Lower Leg Finite Element Model

2020-03-31
2019-22-0011
Lower extremity injuries caused by floor plate impacts through the axis of the lower leg are a major source of injury and disability for civilian and military vehicle occupants. A collection of PMHS pendulum impacts was revisited to obtain data for paired booted/unbooted test on the same leg. Five sets of paired pendulum impacts (10 experiments in total) were found using four lower legs from two PMHS. The PMHS size and age was representative of an average young adult male. In these tests, a PMHS leg was impacted by a 3.4 or 5.8 kg pendulum with an initial velocity of 5, 7, or 10 m/s (42-288 J). A matching LS-DYNA finite element model was developed to replicate the experiments and provide additional energy, strain, and stress data. Simulation results matched the PMHS data using peak values and CORA curve correlations. Experimental forces ranged between 1.9 and 12.1 kN experimentally and 2.0 and 11.7 kN in simulation.
Technical Paper

Application of a Finite Element-Based Human Arm Model for Airbag Interaction Analysis

2004-06-15
2004-01-2147
Interaction of the human arm and deploying airbag has been studied in the laboratory using post mortem human subjects (PMHS). These studies have shown how arm position on the steering wheel and proximity to the airbag prior to deployment can influence the risk of forearm bone fractures. Most of these studies used older driver airbag modules that have been supplanted by advanced airbag technology. In addition, new numerical human body models have been developed to complement, and possibly replace, the human testing needed to evaluate new airbag technology. The objective of this study is to use a finite element-based numerical (MADYMO) model, representing the human arm, to evaluate the effects of advanced driver airbag parameters on the injury potential to the bones of the forearm. The paper shows how the model is correlated to Average Distal Forearm Speed (ADFS) and arm kinematics from two PMHS tests.
Technical Paper

Assessment of 3 and 6-Year-Old Neck Injury Criteria Based on Field Investigation, Modeling, and Sled Testing

2006-04-03
2006-01-0253
The intent of this study was to compare the neck responses measured from the Hybrid III 3 and 6-year-old ATDs in laboratory testing to injuries sustained by three children in a field crash and investigate the appropriateness of recommended in-position neck injury assessment reference values (IARVs), and the regulated out-of-position (OOP) IARVs specified in FMVSS 208 for the Hybrid III 3 and 6-year-old ATDs. This paper principally reports on apparent artifacts associated with the Hybrid III 3 and 6-year-old ATDs, which complicated investigating the appropriateness of the in-position and out-of-position neck IARVs. In tests using 3-point belt restraints, these apparent artifacts included: 1) High neck extension moments, which produced the peak Nij values, without significant observed relative head-to-neck motion, 2) Neck tension forces well in excess of the IARVs that occurred when the ATD's chin contacted the chest.
Technical Paper

Biodynamics of the Total Human Cadaveric Cervical Spine

1990-10-01
902309
Spinal trauma produced from motor vehicle accidents, diving accidents, or falls occur at high rates of loading. This study was undertaken to reproduce clinically relevant cervical spine injuries under controlled conditions. Six isolated head - T2 human cadaveric preparations were tested using an electrohydraulic piston actuator at loading rates from 295 to 813 cm/sec. The Hybrid III head-neck was tested similarly at rates from 401 to 683 cm/sec. The input forces for specimen tests were of higher magnitude and shorter duration than the distally measured forces. In contrast, the Hybrid III head-neck revealed similar magnitude and duration force traces from input to output. The specimen preparations were analyzed kinematically at 1200 frames/sec with 20 to 30 retroreflective targets fixed to each level of the cervical spine. With this technique it is possible to temporally follow cervical damage as a function of applied force.
Technical Paper

Biomechanical Analysis of Tractor Induced Head Injury

1994-09-01
941726
Head injury is a serious threat to lives of people working around farm machinery. The consequence of head injuries are costly, paralytic, and often fatal. Clinical and biomechanical data on head injuries are reviewed and their application in the analysis of head injury risk associated with farm tractor discussed. A significant proportion of tractor-related injuries and deaths to adults, as well as children, is due directly or indirectly to head injury. An improved injury reporting program and biomechanical studies of human response to tractor rollover, runover, and falls, are needed to understand mechanisms of the associated head injury.
Technical Paper

Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia from Vertical Loading

2016-11-07
2016-22-0010
A new anthropomorphic test device (ATD) is being developed by the US Army to be responsive to vertical loading during a vehicle underbody blast event. To obtain design parameters for the new ATD, a series of non-injurious tests were conducted to derive biofidelity response corridors for the foot-ankle complex under vertical loading. Isolated post mortem human surrogate (PMHS) lower leg specimens were tested with and without military boot and in different initial foot-ankle positions. Instrumentation included a six-axis load cell at the proximal end, three-axis accelerometers at proximal and distal tibia, and calcaneus, and strain gages. Average proximal tibia axial forces for a neutral-positioned foot were about 2 kN for a 4 m/s test, 4 kN for 6 m/s test and 6 kN for an 8 m/s test. The force time-to-peak values were from 3 to 5 msec and calcaneus acceleration rise times were 2 to 8 msec.
Technical Paper

Biomechanical Tolerance of the Cranium

1994-09-01
941727
The objective of the study was to investigate the biomechanical response of the intact cranium. Unembalmed human cadavers were used in the study. The specimens were transected at the base of the skull leaving the intracranial contents intact; x-ray and computed tomography (CT) scans were obtained. They were fixed in a specially designed frame at the auditory meatus level and placed on the platform of an electrohydraulic testing device via a six-axis load cell. Following radiography, quasistatic loading to failure was applied to one of the following sites: frontal, vertex, parietal, temporal, or occipital. Retroreflective targets were placed in two mutually orthogonal planes to record the localized temporal kinematics. Applied load and piston displacement, and the output generalized force (and moment) histories were recorded using a modular digital data acquisition system. After the test, x-ray and CT images were obtained, and defleshing was done.
Technical Paper

Biomechanics of Inertial Head-Neck Trauma: Role of Cervical Components

2002-03-19
2002-01-1445
Inertial loading of the head-neck complex occurs in rear impacts wherein the head and neck of the occupant are initially subjected to rearward forces. Epidemiological evidence exists to demonstrate the significance and societal impact of these injuries [4]. From a clinical perspective, trauma secondary to inertial loads belongs to the lower end of the Abbreviated Injury Scale, and no specific diagnostic techniques are available to quantitatively document the injury. Furthermore, identification of the mechanisms of injury and derivation of injury thresholds are limited. In fact, there is a paucity of literature focusing on the reproduction of rear impact-induced neck injuries due to a single-event rear impact. Because the impact acceleration is transmitted to the head from the torso via the cervical column, the components of the human neck play a role in the mechanics of trauma.
Technical Paper

Characterizing Occipital Condyle Loads Under High-Speed Head Rotation

2005-11-09
2005-22-0002
Because of the need to evaluate anthropomorphic test device (ATD) biofidelity under high-head angular accelerations, the purpose of the present investigation was to develop appropriate instrumentation for intact post mortem human subject (PMHS) testing, validate the instrumentation, and obtain information to characterize the response of the head-neck complex under this loading scenario. A series of rigid-arm pendulum, inertially loaded ATD tests was conducted. Head and neck ATD hydraulic piston chin pull tests were conducted. Subsequently, a series of PMHS tests was conducted to derive the response of the human head-neck under high-rate chin loading. Finally, Hybrid III and THOR-NT ATD head-neck systems were evaluated under the same scenario as the PMHS. A parametric analysis for center of gravity (CG) location and accelerometer orientation determined that even small errors (± 3 mm or 2 degrees), produced errors in the force and moment calculations by as much as 17%.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2007-22-0014
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy with Rib Extensions (ES-2re)

2003-10-27
2003-22-0010
Forty-two side impact cadaver sled tests were conducted at 24 and 32 km/h impact speeds into rigid and padded walls. The post-mortem human subjects were instrumented with accelerometers on the ribs and spine and chest bands around the thorax and abdomen to characterize their mechanical response during the impact. Load cells at the wall measured the impact force at the level of the thorax, abdomen, pelvis, and lower extremities. The resulting injuries were determined through detailed autopsy and radiography. Rib fractures with or without associated hemo/pneumo thorax or flail chest were the most common injury with severity ranging from AIS=0 to 5. Full and half thorax deflections were computed from the chest band data. The cadaver test data was analyzed using ANOVA and logistic regression. The age of the subject at the time of death had influence on injury outcome while gender and mass of the subject had little or no influence on injury outcome.
Technical Paper

Dynamic Axial Tolerance of the Human Foot-Ankle Complex

1996-11-01
962426
Axial loading of the calcaneus-talus-tibia complex is an important injury mechanism for moderate and severe vehicular foot-ankle trauma. To develop a more definitive and quantitative relationship between biomechanical parameters such as specimen age, axial force, and injury, dynamic axial impact tests to isolated lower legs were conducted at the Medical College of Wisconsin (MCW). Twenty-six intact adult lower legs excised from unembalmed human cadavers were tested under dynamic loading using a mini-sled pendulum device. The specimens were prepared, pretest radiographs were taken, and input impact and output forces together with the pathology were obtained using load cell data. Input impact forces always exceeded the forces recorded at the distal end of the preparation. The fracture forces ranged from 4.3 to 11.4 kN.
Technical Paper

Dynamic Responses of Intact Post Mortem Human Surrogates from Inferior-to-Superior Loading at the Pelvis

2014-11-10
2014-22-0005
During certain events such as underbody blasts due to improvised explosive devices, occupants in military vehicles are exposed to inferior-to-superior loading from the pelvis. Injuries to the pelvis-sacrum-lumbar spine complex have been reported from these events. The mechanism of load transmission and potential variables defining the migration of injuries between pelvis and or spinal structures are not defined. This study applied inferior-to-superior impacts to the tuberosities of the ischium of supine-positioned five post mortem human subjects (PMHS) using different acceleration profiles, defined using shape, magnitude and duration parameters. Seventeen tests were conducted. Overlay temporal plots were presented for normalized (impulse momentum approach) forces and accelerations of the sacrum and spine.
Technical Paper

Epidemiology and Injury Biomechanics of Motor Vehicle Related Trauma to the Human Spine

1989-10-01
892438
Engineering efforts directed at better occupant safety require a thorough understanding of available epidemiologic data. Epidemiologic studies using clinical as well as accident information facilitates the prioritization of biomechanics research so that controlled laboratory experimentation and/or analytical models can be advanced. This information has also value in dictating levels and types of injury that are critical to the development of anthropomorphic test devices used in crash environments. In this paper, motor vehicle accident related (excluding pedestrians, bicyclists, and motorcyclists) epidemiologic data were obtained from clinical and computerized accident (National Accident Sampling System-NASS) files. Clinical data were gathered from patients admitted to the Medical College of Wisconsin Affiliated Hospitals, and fatalities occurring in Milwaukee County, State of Wisconsin. NASS database with specific focus on spinal injuries of motor vehicle occupants was also used.
Technical Paper

Experimental Determination of Adult and Pediatric Neck Scale Factors

2002-11-11
2002-22-0020
The purpose of this study was to determine scale factors for small, mid-size and large adults using a caprine model. In a previous study conducted in our lab, scaling relationships were developed to define cervical spine tolerance values of children using caprine specimens. In that study, tolerances were normalized with respect to an average adult. Because airbag-related injuries are associated with out-of-position children and small adult females, additional experimental data are needed to better estimate human tolerance. In the present study, cervical spine radiographs from the 5th, 50th and 95th percentile human adults were used to determine vertebral body heights for small, mid-size and large anthropometries. Mean human vertebral body heights were computed for each anthropometry and were normalized with respect to mid-size anthropometry.
X