Refine Your Search

Topic

Search Results

Technical Paper

A 3D-CFD Numerical Approach for Combustion Simulations of Spark Ignition Engines Fuelled with Hydrogen: A Preliminary Analysis

2023-04-11
2023-01-0207
With growing concern about global warming, alternatives to fossil fuels in internal combustion engines are searched. In this context, hydrogen is one of the most interesting fuels as it shows excellent combustion properties such as laminar flame speed and energy density. In this work a CFD methodology for 3D-CFD in-cylinder simulations of engine combustion is proposed and its predictive capabilities are validated against test-bench data from a direct injection spark-ignition (DISI) prototype. The original engine is a naturally aspirated, single cylinder compression ignition (Diesel fueled) unit. It is modified substituting the Diesel injector with a spark plug, adding two direct gas injectors, and lowering the compression ratio to run with hydrogen fuel. A 3D-CFD model is built, embedding in-house developed ignition and heat transfer models besides G-equation one for combustion.
Technical Paper

A Comparison between Different Moving Grid Techniques for the Analysis of the TCC Engine under Motored Conditions

2019-04-02
2019-01-0218
The accurate representation of Internal Combustion Engine (ICE) flows via CFD is an extremely complex task: it strongly depends on a combination of highly impacting factors, such as grid resolution (both local and global), choice of the turbulence model, numeric schemes and mesh motion technique. A well-founded choice must be made in order to avoid excessive computational cost and numerical difficulties arising from the combination of fine computational grids, high-order numeric schemes and geometrical complexity typical of ICEs. The paper focuses on the comparison between different mesh motion technologies, namely layer addition and removal, morphing/remapping and overset grids. Different grid strategies for a chosen mesh motion technology are also discussed. The performance of each mesh technology and grid strategy is evaluated in terms of accuracy and computational efficiency (stability, scalability, robustness).
Technical Paper

A Comprehensive CFD-CHT Methodology for the Characterization of a Diesel Engine: from the Heat Transfer Prediction to the Thermal Field Evaluation

2017-10-08
2017-01-2196
High power-density Diesel engines are characterized by remarkable thermo-mechanical loads. Therefore, compared to spark ignition engines, designers are forced to increase component strength in order to avoid failures. 3D-CFD simulations represent a powerful tool for the evaluation of the engine thermal field and may be used by designers, along with FE analyses, to ensure thermo-mechanical reliability. The present work aims at providing an integrated in-cylinder/CHT methodology for the estimation of a Diesel engine thermal field. On one hand, in-cylinder simulations are fundamental to evaluate not only the integral amount of heat transfer to the combustion chamber walls, but also its point-wise distribution. To this specific aim, an improved heat transfer model based on a modified thermal wall function is adopted to estimate correctly wall heat fluxes due to combustion.
Journal Article

CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine

2016-04-05
2016-01-0601
The occurrence of knock is the most limiting hindrance for modern Spark-Ignition (SI) engines. In order to understand its origin and move the operating condition as close as possible to onset of this potentially harmful phenomenon, a joint experimental and numerical investigation is the most recommended approach. A preliminary experimental activity was carried out at IM-CNR on a 0.4 liter GDI unit, equipped with a flat transparent piston. The analysis of flame front morphology allowed to correlate high levels of flame front wrinkling and negative curvature to knock prone operating conditions, such as increased spark timings or high levels of exhaust back-pressure. In this study a detailed CFD analysis is carried out for the same engine and operating point as the experiments. The aim of this activity is to deeper investigate the reasons behind the main outcomes of the experimental campaign.
Technical Paper

Characterization of Alcohol Sprays from Multi-Hole Injector for DISI Engines through PIV Technique

2015-04-14
2015-01-0927
The use of alcohols as alternative to gasoline for fuelling spark-ignition (SI) engines is widespread. Growing interest is paid for n-butanol because of its characteristics that are similar to gasoline. If compared with other alcohols, n-butanol has higher energy content and miscibility with gasoline, lower hygroscope and corrosive properties making it an attractive solution for gasoline replacement. Even if several studies have been conduced to characterize the n-butanol combustion within Spark Ignition engines, few data are available on atomization and spray behavior. This paper reports the results of an experimental investigation to characterize the velocity vector field of two fuel-sprays injected by a 6-hole nozzle for Direct Injection Spark Ignition (DISI) engine. 2D Mie-scattering and Particle Image Velocimetry (PIV) measurements were carried out in an optically accessible vessel at ambient temperature and pressure.
Technical Paper

Chemistry-Based Laminar Flame Speed Correlations for a Wide Range of Engine Conditions for Iso-Octane, n-Heptane, Toluene and Gasoline Surrogate Fuels

2017-10-08
2017-01-2190
CFD simulations of reacting flows are fundamental investigation tools used to predict combustion behaviour and pollutants formation in modern internal combustion engines. Focusing on spark-ignited units, most of the flamelet-based combustion models adopted in current simulations use the fuel/air/residual laminar flame propagation speed as a background to predict the turbulent flame speed. This, in turn, is a fundamental requirement to model the effective burn rate. A consolidated approach in engine combustion simulations relies on the adoption of empirical correlations for laminar flame speed, which are derived from fitting of combustion experiments. However, these last are conducted at pressure and temperature ranges largely different from those encountered in engines: for this reason, correlation extrapolation at engine conditions is inevitably accepted. As a consequence, relevant differences between proposed correlations emerge even for the same fuel and conditions.
Technical Paper

Combustion Process Investigation in a Small SI Engine using Optical Diagnostics

2010-10-25
2010-01-2262
Nowadays an elevated number of two, three and four wheels vehicles circulating in the world-wide urban areas is equipped with Port Fuel Injection Spark Ignition (PFI SI) engines. Their technological level is high, but a further optimization is still possible, especially at low engine speed and high load. To this purpose, the scientific community is now focused on deepening the understanding of thermo fluid dynamic phenomena that takes place in this kind of engine: the final purpose is to find key points for the reduction in engine specific fuel consumption and exhaust emissions without a decrease in performance. In this work, the combustion process was investigated in an optically accessible single cylinder PFI SI engine. It was equipped with the head, injection device and exhaust line of a commercial small engine for two-wheel vehicles, it had the same geometrical characteristics in terms of bore, stroke and compression ratio.
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of Port- vs Direct-Injection and Boosting Requirements

2023-08-28
2023-24-0074
Hydrogen is an energy vector with low environmental impact and will play a significant role in the future of transportation. Converting a spark ignition (SI) engine powered vehicle to H2 fueling has several challenges, but was overall found to be feasible with contained cost. Fuel delivery directly to the cylinder features numerous advantages and can successfully mitigate backfire, a major issue for H2 SI engines. Within this context, the present work investigated the specific fuel system requirements in port- (PFI) and direct-injection (DI) configurations. A 0D/1D model was used to simulate engine operating characteristics in several working conditions. As expected, the model predicted significant improvement of volumetric efficiency for DI compared to the PFI configuration. Boosting requirements were predicted to be at levels quite close to those for gasoline fueling.
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: Focus on Rated Power and Injection Phasing Effects

2022-09-16
2022-24-0031
In the context of increasing efforts towards zero emissions transport, hydrogen represents a valid alternative to electric powertrains. Spark ignition (SI) engines are well suited for this alternative fuel and its specific application requires relatively minor changes with respect to added components. Limited range is one of the main issues with hydrogen as an energy source for transportation, due to its low energy density. The present study looked at the possibility of converting a small size passenger car powered by a turbocharged SI unit to hydrogen fueling. Taking the electric version of the vehicle as benchmark, the initial evaluation of the hydrogen SI alternative appears feasible with an additional gas container comparable in size to the gasoline tank. As a result, further investigation was aimed at actual engine operation in port fuel injection mode, with a focus on rated power and injection phasing effects.
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: Focus on Vehicle Dynamics and ECU Remapping Requirements

2023-08-28
2023-24-0065
Converting spark ignition (SI) engines to H2 fueling is an attractive route for achieving zero carbon transportation and solving the legacy fleet problem in a future scenario in which electric powertrains will dominate. The current paper looks at a small size passenger car in terms of vehicle dynamics and electronic control unit (ECU) remapping requirements, in the hypothesis of using H2 as a gasoline replacement. One major issue with the use of H2 in port fuel injection (PFI) engines is that it causes reduced volumetric efficiency and thus low power. The vehicle considered for the study features turbocharging and therefore complete or partial recuperation of lost power is possible. Other specific requirements such as injection phasing were also under scrutiny, especially as PFI was hypothesized to maximize cost effectiveness. A 0D/1D model was used for simulating engine running characteristics as well as vehicle dynamics.
Journal Article

Critical Aspects on the Use of Thermal Wall Functions in CFD In-Cylinder Simulations of Spark-Ignition Engines

2017-03-28
2017-01-0569
CFD and FE tools are intensively adopted by engine manufacturers in order to prevent thermo-mechanical failures reducing time- and cost-to market. The capability to predict correctly the physical factors leading to damages is hence essential for their application in the industrial practice. This is even more important for last generation SI engines, where the more and more stringent need to lower fuel consumption and pollutant emissions is pushing designers to reduce engine displacement in favor of higher specific power, usually obtained by means of turbocharging. This brings to a new generation of SI engines characterized by higher and higher adiabatic efficiency and thermo-mechanical loads. A recent research highlighted the different behavior of the thermal boundary layer of such engines operated at high revving speeds and high loads if compared to the same engines operated at low loads and revving speeds or even engines with a lower specific power.
Journal Article

Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine

2016-04-05
2016-01-0545
It is widely recognized that spatial and temporal evolution of both macro- and micro- turbulent scales inside internal combustion engines affect air-fuel mixing, combustion and pollutants formation. Particularly, in spark ignition engines, tumbling macro-structure induces the generation of a proper turbulence level to sustain the development and propagation of the flame front. As known, 3D-CFD codes are able to describe the evolution of the in-cylinder flow and turbulence fields with good accuracy, although a high computational effort is required. For this reason, only a limited set of operating conditions is usually investigated. On the other hand, thanks to a lower computational burden, 1D codes can be employed to study engine performance in the whole operating domain, despite of a less detailed description of in-cylinder processes. The integration of 1D and 3D approaches appears hence a promising path to combine the advantages of both.
Journal Article

Development of a RANS-Based Knock Model to Infer the Knock Probability in a Research Spark-Ignition Engine

2017-03-28
2017-01-0551
Engine knock is one of the most limiting factors for modern Spark-Ignition (SI) engines to achieve high efficiency targets. The stochastic nature of knock in SI units hinders the predictive capability of RANS knock models, which are based on ensemble averaged quantities. To this aim, a knock model grounded in statistics was recently developed in the RANS formalism. The model is able to infer a presumed log-normal distribution of knocking cycles from a single RANS simulation by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. As a main advantage, the model is able to estimate the earliest knock severity experienced when moving the operating condition into the knocking regime.
Technical Paper

Experimental Study on the Spray Atomization of a Multi-hole Injector for Spark Ignition Engines Fuelled by Gasoline and n-Butanol

2014-10-13
2014-01-2743
Alcohols are largely used in spark-ignition (SI) engines as alternative fuels to gasoline. Particularly, the use of butanol meets growing interest due to its properties that are similar to gasoline, if compared with other alcohols. This paper aims to make a comparative analysis on the atomization process of gasoline and n-butanol fuel injected by a multi-hole injector nozzle for spark ignition engines. Phase Doppler Anemometry technique was applied to investigate the behavior of a spray emerging from a six-hole nozzle for direct injection spark ignition engine applications. Commercial gasoline and pure n-butanol were investigated. The fuels were injected at two pressures: namely at 5 and 10 MPa, in a test vessel at quiescent air conditions, ambient temperature and backpressure. Droplets diameter and velocity were estimated along the axis and on the edge direction of a jet through Phase Doppler Anemometry in order to provide useful information on the atomization process.
Technical Paper

Experimental and Numerical Investigation of the Flow Field Effect on Arc Stretching for a J-type Spark Plug

2021-09-05
2021-24-0020
Nowadays internal combustion engines can operate under lean combustion conditions to maximize efficiency, as long as combustion stability is guaranteed. The robustness of combustion initiation is one of the main issues of actual spark-ignition engines, especially at high level of excess-air or dilution. The enhancement of the in-cylinder global motion and local turbulence is an effective way to increase the flame velocity. During the ignition process, the excessive charge motion can hinder the spark discharge and eventually cause a misfire. In this perspective, the interaction between the igniter and the flow field is a fundamental aspect which still needs to be explored in more detail to understand how the combustion originates and develops. In this work, a combined experimental and numerical study is carried out to investigate the flow field around the spark gap, and its effect on the spark discharge evolution.
Technical Paper

Fuel Injection Effect on In-cylinder Formation and Exhaust Emission of Particulate from a 4-Stroke Engine for 2-Wheel Vehicles

2010-04-12
2010-01-0354
The small engine for two-wheel vehicles has generally high possibility to be optimized at low speeds and high loads. In these conditions fuel consumption and pollutants emission should be reduced maintaining the performance levels. This optimization can be realized only improving the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. It is known that, during the fuel injection phase in PFI SI engines, thin films of liquid fuel can form on the valves surface and on the cylinder walls. Successively the fuel films interact with the intake manifold and the combustion chamber gas flow. During the normal combustion process, it is possible to achieve gas temperature and mixture strength conditions that lead to fuel film ignition. This phenomenon can create diffusion-controlled flames that can persist well after the normal combustion event. These flames induce the emission of soot and unburned hydrocarbons.
Technical Paper

Image Processing for Early Flame Characterization and Initialization of Flamelet Models of Combustion in a GDI Engine

2015-09-06
2015-24-2405
Ignition and flame inception are well recognised as affecting performance and stable operation of spark ignition engines. The very early stage of combustion is indeed the main source of cycle-to-cycle variability, in particular in gasoline direct injection (GDI) engines, where mixture formation may lead to non-homogenous air-to-fuel distributions, especially under some speed and load conditions. From a numerical perspective, 3D modelling of combustion within Reynolds Averaged Navier Stokes (RANS) approaches is not sufficient to provide reliable information about cyclic variability, unless proper changes in the initial conditions of the flow transport equations are considered. Combustion models based on the flamelet concept prove being particularly suitable for the simulation of the energy conversion process in internal combustion engines, due to their low computational cost. These models include a transport equation for the flame surface density, which needs proper initialization.
Technical Paper

In-Cylinder Spectroscopic Measurements of Combustion Process in a SI Engine Fuelled with Butanol-Gasoline Blend

2013-04-08
2013-01-1318
In-cylinder optical diagnostic was applied to study butanol-gasoline blend combustion in a SI engine. Spark timing and fuel injection mode were changed to work in normal and knocking conditions. The experiments were realized in a single-cylinder ported fuel injection SI engine with an external boosting device. The engine worked like-stoichiometric mixture at 2000 rpm, medium boosting and wide open throttle. UV-visible natural emission spectroscopy allowed to follow the formation and the evolution of the main compounds and radical species that characterize the combustion process from the spark ignition until the exhaust. Particular interest was devoted to OH and CO₂* evolution, and to the spectral evidence of soot precursors due to fuel deposits burning. OH resulted the best marker for combustion both in normal and abnormal conditions.
Journal Article

Influence of Engine Speed and Injection Phasing on Lean Combustion for Different Dilution Rates in an Optically Accessible Wall-Guided Spark Ignition Engine

2018-04-03
2018-01-1421
Alternative combustion control in the form of lean operation offers significant advantages such as high efficiency and “clean” fuel oxidation. Maximum dilution rates are limited by increasing instability that can ultimately lead to partial burning or even misfires. A compromise needs to be reached between high tumble-turbulence levels that “speed-up” combustion and the inherent stochastic nature of this fluid motion. The present study is focused on gaining improved insight into combustion characteristics through thermodynamic analysis and flame imaging, in a wall-guided direct injection spark ignition engine with optical accessibility. Engine speed values were investigated in the range of 1000 to 2000 rpm, with commercial gasoline fueling, in wide open throttle conditions; mixture strength ranged from stoichiometric, down to the equivalence ratios that allowed acceptable cycle-by-cycle variations; and all cases featured spark timing close to the point of maximum brake torque.
Journal Article

Integrated In-Cylinder / CHT Methodology for the Simulation of the Engine Thermal Field: An Application to High Performance Turbocharged DISI Engines

2016-04-05
2016-01-0578
New SI engine generations are characterized by a simultaneous reduction of the engine displacement and an increase of the brake power; such targets are achieved through the adoption of several techniques such as turbocharging, direct fuel injection, variable valve timing and variable port lengths. This design approach, called “downsizing”, leads to a marked increase in the thermal loads acting on the engine components, in particular on those facing the combustion chamber. Hence, an accurate evaluation of the thermal field is of primary importance in order to avoid mechanical failures. Moreover, the correct evaluation of the temperature distribution improves the prediction of pointwise abnormal combustion onset.
X