Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of the Effect of a Catalyzed Particulate Filter on the Emissions from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0910
The effects of a catalyzed particulate filter (CPF) and Exhaust Gas Recirculation (EGR) on heavy-duty diesel engine emissions were studied in this research. EGR is used to reduce the NOx emissions but at the same time it can increase total particulate matter (TPM) emissions. CPF is technology available for retrofitting existing vehicles in the field to reduce the TPM emissions. A conventional low sulfur fuel (371 ppm S) was used in all the engine runs. Steady-state loading and regeneration experiments were performed with CPF I to determine its performance with respect to pressure drop and particulate mass characteristics at different engine operating conditions. From the dilution tunnel emission characterization results for CPF II, at Mode 11 condition (25% load - 311 Nm, 1800 rpm), the TPM, HC and vapor phase emissions (XOC) were decreased by 70%, 62% and 62% respectively downstream of the CPF II.
Technical Paper

An Experimental and Computational Study of the Pressure Drop and Regeneration Characteristics of a Diesel Oxidation Catalyst and a Particulate Filter

2006-04-03
2006-01-0266
An experimental and computational study was performed to evaluate the performance of the CRT™ technology with an off-highway engine with a cooled low pressure loop EGR system. The MTU-Filter 1D DPF code predicts the particulate mass evolution (deposition and oxidation) in a diesel particulate filter (DPF) during simultaneous loading and during thermal and NO2-assisted regeneration conditions. It also predicts the pressure drop across the DPF, the flow and temperature fields, the solid filtration efficiency and the particle number distribution downstream of the DPF. A DOC model was also used to predict the NO2 upstream of the DPF. The DPF model was calibrated to experimental data at temperatures from 230°C to 550°C, and volumetric flow rates from 9 to 39 actual m3/min.
Technical Paper

An Experimental and Numerical Study of the Performance Characteristics of the Diesel Oxidation Catalyst in a Continuously Regenerating Particulate Filter

2003-10-27
2003-01-3176
A one-dimensional model simulating the oxidation of CO, HC, and NO was developed to predict the gaseous emissions downstream of a diesel oxidation catalyst (DOC). The model is based on the conservation of mass, species, and energy inside the DOC and draws on past research literature. Steady-state experiments covering a wide range of operating conditions (exhaust temperatures, flow rates and gaseous emissions) were performed, and the data were used to calibrate and validate the model. NO conversion efficiencies of 50% or higher were obtained at temperatures between 300°C and 350°C. CO conversion efficiencies of 85% or higher and HC conversion efficiencies of 75% or higher were found at every steady state condition above 200°C. The model agrees well with the experimental results at temperatures from 200°C to 500°C, and volumetric flow rates from 8 to 42 actual m3/min.
Technical Paper

Ceramic Particulate Traps for Diesel Emissions Control - Effects of a Manganese-Copper Fuel Additive

1988-02-01
880009
The effect of the use of a manganese-copper fuel additive with a Corning EX-47 particulate trap on heavy-duty diesel emissions has been investigated; reductions in total particulate matter (70%), sulfates (65%), and the soluble organic fraction (SOF) (62%) were measured in the diluted (15:1) exhaust and solids were reduced by 94% as measured in the raw exhaust. The use of the additive plus the trap had the same effect on gaseous emissions (hydrocarbons and oxides of nitrogen) as did the trap alone. The use of the additive without the trap had no effect on measured gaseous emissions, although sulfate increased by 20%. Approximately 50% of the metals added to the fuel were calculated to be retained in the engine system. The metals emitted by the engine were collected very efficiently (>97%) by the trap even during regeneration, which occured 180°C lower when the additive was used.
Technical Paper

Comparison of Effects of MTBE and TAME on Exhaust and Evaporative Emissions — Auto/Oil Air Quality Improvement Research Program

1993-10-01
932730
Effects of methyl tertiary-butyl ether (MTBE) and tertiary-amyl methyl ether (TAME) on emissions were compared in a fleet of ten 1989 model year vehicles. Test fuels containing 11.5 vol.% MTBE or 12.7 vol.% TAME were blended in a base fuel representing federal emission certification fuel. The oxygen content of both fuels was about 2.0 wt.%. No significant differences were found between the two fuels in exhaust mass HC, NMHC, CO, or NOx; in exhaust or evaporative toxic air pollutants, benzene, 1,3-butadiene, acetaldehyde, or total toxic emissions; or in evaporative hot soak emissions. The only differences found to be significant at the 95% level were in mass and estimated reactivity-weighted diurnal evaporative emissions, for both of which the TAME fuel was about 24% lower than the MTBE fuel; and in formaldehyde emissions, which were 28% higher with the TAME fuel.
Technical Paper

Effect of Fuel Sulfur on Emissions in California Low Emission Vehicles

1998-10-19
982726
The Coordinating Research Council conducted a program to measure the effect of fuel sulfur on emissions from California Low Emission Vehicles (LEVs). Twelve vehicles, two each from six production LEV models, were tested using low mileage as-received catalysts and catalysts aged to 100k by each vehicle manufacturer using “rapid-aging” procedures. There were seven test fuels: five conventional fuels with sulfur ranging from 30 to 630 ppm, and two California reformulated gasoline (RFG) with sulfur of 30 and 150 ppm. Reducing fuel sulfur produced statistically significant reductions in LEV fleet emissions of NMHC, NOx and CO. Comparing conventional fuel and California RFG at the same sulfur level: California RFG had lower NMHC and NOx emissions and higher CO emissions, but only some NMHC and NOx differences and none of the CO differences between conventional and California RFG were statistically significant.
Technical Paper

Effects of Diesel Fuel Sulfur Level on Performance of a Continuously Regenerating Diesel Particulate Filter and a Catalyzed Particulate Filter

2000-06-19
2000-01-1876
This paper reports the test results from the DPF (diesel particulate filter) portion of the DECSE (Diesel Emission Control - Sulfur Effects) Phase 1 test program. The DECSE program is a joint government and industry program to study the impact of diesel fuel sulfur level on aftertreatment devices. A systematic investigation was conducted to study the effects of diesel fuel sulfur level on (1) the emissions performance and (2) the regeneration behavior of a continuously regenerating diesel particulate filter and a catalyzed diesel particulate filter. The tests were conducted on a Caterpillar 3126 engine with nominal fuel sulfur levels of 3 parts per million (ppm), 30 ppm, 150 ppm and 350 ppm.
Technical Paper

Effects of Gasoline Composition and Properties on Vehicle Emissions: A Review of Prior Studies - Auto/Oil Air Quality Improvement Research Program

1991-10-01
912321
Prior studies of the effect of gasoline composition and physical properties on automotive exhaust and evaporative emissions have been reviewed. The prior work shows that the parameters selected for investigation in the Auto/Oil Air Quality Improvement Research Program (AQIRP) - gasoline aromatics content, addition of oxygenated compounds, olefins content, 90% distillation temperature, Reid vapor pressure, and sulfur content - can affect emissions. Effects have been observed on the mass of hydrocarbon, CO, and NOx emissions; on the reactivity of emissions toward ozone formation; and on the emissions of designated toxic air pollutants. The individual effects of some of the AQIRP parameters have been studied extensively in modern vehicles, but the most comprehensive studies of gasoline composition were conducted in early 1970 vehicles, and comparing the various studies shows that fuel effects can vary among vehicles with different control technology.
Technical Paper

Effects of Gasoline Sulfur Level on Exhaust Mass and Speciated Emissions: The Question of Linearity - Auto/Oil Air Quality Improvement Program

1993-10-01
932727
Effects of gasoline sulfur content on emissions were measured in a fleet of ten 1989 model year vehicles. Two ranges of sulfur content were examined. In a set of five fuels, reducing sulfur from 450 to 50 ppm, reduced fleet average tailpipe emissions of HC, NMHC and CO each by about 18%, and reduced NOx 8%. The largest effect on HC and CO emissions was observed in FTP Bag 2. This and the absence of any significant effect on engine emissions indicate that sulfur affected the performance of the catalytic converters. The response of HC and NMHC to fuel sulfur content was non-linear and increased as sulfur level was reduced. In the second set of three fuels, reducing sulfur from 50 to 10 ppm reduced HC and NMHC by 6% and CO by 10%, but had no significant effect on NOx. The effects on HC, NMHC and NOx were not significantly different from predictions based on the prior fuel set. The reduction in CO was larger than predicted.
Technical Paper

Effects of Heavy Hydrocarbons in Gasoline on Exhaust Mass Emissions, Air Toxics, and Calculated Reactivity - Auto/Oil Air Quality Improvement Research Program

1993-10-01
932723
Emission effects of gasoline hydrocarbon components distilling above 300°F were investigated to determine whether the effect of 90% distillation temperature (T90) found in an earlier Auto/Oil Program study is due to fuel distillation properties or to hydrocarbon composition, and also to determine whether the T90 effect is linear. Twenty-six fuels were tested in two sets. In Matrix A, the independent variables were catalytically cracked (FCC) and reformate stocks with nominal distillation ranges of 300 to 350, 350 to 400 and 400+°F. In Matrix B, the independent variables were a reformate stock (320 to 370°F), a heavy alkylate (330 to 475°F), and a light alkylate distilling below 300°F, which was used to vary fuel T50 at fixed levels of T90. Exhaust mass and speciation were measured using ten 1989 vehicles of the Auto/Oil Current Fleet. Tailpipe hydrocarbon emissions were found to increase nonlinearly with progressive addition of the heavier components.
Technical Paper

Effects of a Ceramic Particle Trap and Copper Fuel Additive on Heavy-Duty Diesel Emissions

1994-10-01
942068
This research quantifies the effects of a copper fuel additive on the regulated [oxides of nitrogen (NOx), hydrocarbons (HC) and total particulate matter (TPM)] and unregulated emissions [soluble organic fraction (SOF), vapor phase organics (XOC), polynuclear aromatic hydrocarbons (PAH), nitro-PAH, particle size distributions and mutagenic activity] from a 1988 Cummins LTA10 diesel engine using a low sulfur fuel. The engine was operated at two steady state modes (EPA modes 9 and 11, which are 75 and 25% load at rated speed, respectively) and five additive levels (0, 15, 30, 60 and 100 ppm Cu by mass) with and without a ceramic trap. Measurements of PAH and mutagenic activity were limited to the 0, 30 and 60 ppm Cu levels. Data were also collected to assess the effect of the additive on regeneration temperature and duration. Copper species collected within the trap were identified and exhaust copper concentrations quantified.
Technical Paper

Effects of an Oxidation Catalytic Converter on Regulated and Unregulated Diesel Emissions

1994-03-01
940243
In this study, the effects of an oxidation catalytic converter (OCC) on regulated and unregulated emissions from a 1991 prototype Cummins I.10-310 diesel engine fueled with a 0.01 weight percent sulfur fuel were investigated. The OCC's effects were determined by measuring and comparing selected raw exhaust emissions with and without the platinum-based OCC installed in the exhaust system, with the engine operated at three steady-state modes. It was found that the OCC had no significant effect on oxides of nitrogen (NOX) and nitric oxide (NO) at any mode, but reduced hydrocarbon (HC) emmissions by 60 to 70 percent. The OCC reduced total particulate matter (TPM) levels by 27 to 54 percent, primarily resulting from 53 to 71 percent reductions of the soluble organic fraction (SOF). The OCC increased sulfate (SO42-) levels at two of the three modes (modes 9 and 10), but the overall SO42- contribution to TPM was less than 6 percent at all modes due to the low sulfur level of the fuel.
Technical Paper

Efficiency and Emissions Mapping of a Light Duty Diesel - Natural Gas Engine Operating in Conventional Diesel and RCCI Modes

2016-10-17
2016-01-2309
Reactivity Controlled Compression Ignition (RCCI) is a promising dual-fuel Low Temperature Combustion (LTC) mode with significant potential for reducing NOx and particulate emissions while improving or maintaining thermal efficiency compared to Conventional Diesel Combustion (CDC) engines. The large reactivity difference between diesel and Natural Gas (NG) fuels provides a strong control variable for phasing and shaping combustion heat release. In this work, the Brake Thermal Efficiencies (BTE), emissions and combustion characteristics of a light duty 1.9L, four-cylinder diesel engine operating in single fuel diesel mode and in Diesel-NG RCCI mode are investigated and compared. The engine was operated at speeds of 1300 to 2500 RPM and loads of 1 to 7 bar BMEP. Operation was limited to 10 bar/deg Maximum Pressure Rise Rate (MPRR) and 6% Coefficient of Variation (COV) of IMEP.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Technical Paper

Extended Kalman Filter Estimator for NH3 Storage, NO, NO2 and NH3 Estimation in a SCR

2013-04-08
2013-01-1581
This paper focuses on the development of an Extended Kalman Filter for estimating internal species concentration and storage states of an SCR using NOX and NH₃ sensors. The motivation for this work was twofold. First, knowledge of internal states may be useful for onboard diagnostic strategy development. In particular, significant errors between the outlet NOX or NH₃ sensors, reconstructed from estimated states, and the measured NOX or NH₃ concentrations may aid OBD strategies that attempt to identify particular system failure modes. Second, the EKF described estimates not only stored ammonia but also NO, NO₂ and NH₃ gas concentrations within and exiting the SCR. Exploiting knowledge of the individual species concentrations, instead of lumping them together as NOX, can yield improved closed loop urea controller performance in terms of reduced urea consumption and better NOX conversion.
Technical Paper

Extended Kalman Filter to Estimate NO, NO2, Hydrocarbon and Temperatures in a DOC during Active Regeneration and Under Steady State Conditions

2015-04-14
2015-01-1059
Diesel Oxidation Catalysts (DOC) are used on heavy duty diesel engine applications and experience large internal temperature variations from 150 to 600°C. The DOC oxidizes the CO and HC in the exhaust to CO2 and H2O and oxidizes NO to NO2. The oxidation reactions are functions of its internal temperatures. Hence, accurate estimation of internal temperatures is important both for onboard diagnostic and aftertreatment closed loop control strategies. This paper focuses on the development of a reduced order model and an Extended Kalman Filter (EKF) state estimator for a DOC. The reduced order model simulation results are compared to experimental data. This is important since the reduced order model is used in the EKF estimator to predict the CO, NO, NO2 and HC concentrations in the DOC and at the outlet. The estimator was exercised using transient drive cycle engine data. The closed loop EKF improves the temperature estimate inside the DOC compared to the open loop estimator.
Technical Paper

Fuel Effects in Auto/Oil High Emitting Vehicles

1993-03-01
930137
Fuel effects on exhaust emissions of a sample of seven high emitting vehicles were studied. The vehicles had various mechanical problems and all ran fuel rich. The degree of enrichment varied between tests, and strongly affected mass emissions. Variable enrichment can cause incorrect apparent fuel effects to be calculated if not accounted for in data analysis. After variable enrichment was compensated for, the percentage effects of fuel oxygen, RVP, and olefins were largely in agreement with prior findings for normally emitting vehicles. Reducing fuel sulfur and T90 may have less benefit on hydrocarbon emissions in these high emitters than in normal emitters, and reducing sulfur may have less benefit on CO emissions. Reducing aromatics may be somewhat more helpful in reducing hydrocarbon and CO emissions in the high emitters.
Technical Paper

Impact of EGR on Combustion Processes in a Hydrogen Fuelled SI Engine

2008-04-14
2008-01-1039
With concerns continuing to grow with respect to global warming from greenhouse gases, further regulations are being examined, developed and are expected for the emission of CO2 as an automobile exhaust. Renewable alternate fuels offer the potential to significantly reduce the CO2 impact of transportation. Hydrogen as a spark - ignition (SI) engine fuel provides this potential for significant CO2 reduction when generated from renewable resources. In addition, hydrogen has advantageous combustion properties including a wide flammable mixture range which facilitates lean burning and high dilution, fast combustion energy release and zero CO2 emissions. However, the high burning rates and fast energy release can lead to excessive in-cylinder pressures and temperatures resulting in combustion knock and high NOx emissions at stoichiometric operation.
Technical Paper

Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit

2013-04-08
2013-01-1630
For spark-ignition gasoline engines operating under the wide speed and load conditions required for light duty vehicles, ignition quality limits the ability to minimize fuel consumption and NOx emissions via dilution under light and part load conditions. In addition, during transients including tip-outs, high levels of dilution can occur for multiple combustion events before either the external exhaust gas can be adjusted and cleared from the intake or cam phasing can be adjusted for correct internal dilution. Further improvement and a thorough understanding of the impact of the ignition system on combustion near the dilution limit will enable reduced fuel consumption and robust transient operation. To determine and isolate the effects of multiple parameters, a variable output ignition system (VOIS) was developed and tested on a 3.5L turbocharged V6 homogeneous charge direct-injection gasoline engine with two spark plug gaps and three ignition settings.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
X