Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

CAATS - Automotive Wind Tunnel Test Techniques

2024-04-09
2024-01-2543
This paper contributes to the Committee on Commonized Aerodynamics Automotive Testing Standards (CAATS) initiative, established by the late Gary Elfstrom. It is collaboratively compiled by automotive wind tunnel users and operators within the Subsonic Aerodynamic Testing Association (SATA). Its specific focus lies in automotive wind tunnel test techniques, encompassing both those relevant to passenger car and race car development. It is part of the comprehensive CAATS series, which addresses not only test techniques but also wind tunnel calibration, uncertainty analysis, and wind tunnel correction methods. The core objective of this paper is to furnish comprehensive guidelines for wind tunnel testing and associated techniques. It begins by elucidating the initial wind tunnel setup and vehicle arrangement within it.
Journal Article

Terrain Profile Estimation for use in Suspension Simulation Testing

2008-04-14
2008-01-1414
Efforts by vehicle manufacturers to reduce road testing have resulted in an increased reliance on the simulation methods for loads measurement and validation, including increased emphasis on methods to characterize and digitally represent test road inputs. Accurate terrain models are especially important in the case of large dynamic road inputs, and for evaluation of vehicle suspension loads and durability. In contrast to direct terrain topology measurement, methods to estimate test road input using only vehicle suspension measurements and a tire dynamic model will be presented. Applications of terrain models for generic simulation and testing will also be discussed.
Journal Article

Reducing Power Demand for Heavy Suspension Tests

2008-04-14
2008-01-0690
Competitive pressures, globalization of markets, and integration of new materials and technologies into heavy vehicle suspension systems have increased demand for durability validation of new designs. Traditional Proving Ground and on-road testing for suspension development have the limitations of extremely long test times, poor repeatability and the corresponding difficultly in getting good engineering level data on failures. This test approach requires a complete vehicle driven continuously over severe Proving Ground events for extended periods. Such tests are not only time consuming but also costly in terms of equipment, maintenance, personnel, and fuel. Ideally multiple samples must be tested to accumulate equivalent millions of kilometers of operation in highly damaging environments.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Technical Paper

Virtual Testing and Correlation with Spindle Coupled Full Vehicle Testing System

2006-04-03
2006-01-0993
This paper describes an approach to simulate spindle coupled full vehicle durability tests for the purpose of completing virtual durability evaluations on components and full vehicles before a prototype is available. The reproduction of measured spindle loads was achieved on a virtual model of a passenger car coupled to a 4 Degree of Freedom (DOF) and 6 DOF spindle coupled test system. The tools and process improvements developed here will aid both test and analysis engineers in working closer together in solving their durability problems. By using Remote Parameter Control® (RPC®) technology in the virtual world, analysts have a new method to understand the virtual model by reproducing field-measured or generic road predicted signals for a variety of road surfaces. With newly created test rig models and a user friendly RPC™ iteration process, virtual testing that accurately replicates laboratory tests are now a reality.
Technical Paper

Correlation of Explicit Finite Element Road Load Calculations for Vehicle Durability Simulations

2006-03-01
2006-01-1980
Durability of automotive structures is a primary engineering consideration that is evaluated during a vehicle's design and development. In addition, it is a basic expectation of consumers, who demand ever-increasing levels of quality and dependability. Automakers have developed corporate requirements for vehicle system durability which must be met before a products is delivered to the customer. To provide early predictions of vehicle durability, prior to the construction and testing of prototypes, it is necessary to predict the forces generated in the vehicle structure due to road inputs. This paper describes an application of the “virtual proving ground” approach for vehicle durability load prediction for a vehicle on proving ground road surfaces. Correlation of the results of such a series of simulations will be described, and the modeling and simulation requirements to provide accurate simulations will be presented.
Technical Paper

Full Vehicle Finite Element Model 4-Post Durability Analysis

2005-04-11
2005-01-1402
4-Post durability test simulations using a nonlinear FEA model have been executed by engineers responsible for structural durability performance and validation. An integrated Body and Chassis, full FEA model has been used. All components of the test load input were screened and only the most damaging events were incorporated in the simulation. These events included the Potholes, Belgian Block Tracks, Chatter Bump Stops, Twist Ditches, and Driveway Ramps. The CAE technology Virtual Proving Ground (eta/VPG®*) was used to model the full system and the 4-Post test fixtures. The nonlinear dynamic FE solver LS-DYNA** was used in this analysis. The fatigue damage of each selected event was calculated separately and then added together according to the test schedule. Due to the lack of stress/strain information from hardware test, only the analyzed fatigue damage results of the baseline model were scaled to correlate with physical test data.
Technical Paper

Motorcycle Secondary Drive Testing using a Servo-Hydraulic Laboratory Test System

2004-09-27
2004-32-0045
This paper documents the process used to correlate the secondary belt degradation experienced on the test track with the secondary belt degradation experienced during laboratory tests using a Secondary Drive Test System. Two different software products were used to produce this correlation: nCode's pseudo-damage functionality was used to estimate the proportional belt degradation and MTS's RPC Pro functionality was used to edit the field data, create a time history file, and to shift the frequency domain of the vehicle into the usable range of the servo-hydraulic actuator (time stretching). For purposes of this paper, the test data and information presented in this paper is based on two different secondary drive belts that were used on the test track as well as in the laboratory tests. As will be shown, the plot information that resulted from these tests showed very good correlation.
Technical Paper

New Methods of Side Impact Simulation for Better Waveform Reproduction and Door Interaction

2004-03-08
2004-01-0474
As a result of the severity of occupant injuries during a side impact collision, there has been an escalating demand for accurate component level side impact simulation. Three major components for accurate simulation are accurate door velocity, door to seat relative velocity, and door deformation. This paper shows data demonstrating accurate door velocity reproduction, presents test methods to passively and actively control relative seat to door velocity in a non destructive manner, and presents test methods to simulate real time door deformation in a destructive manner. All side impact waveforms include a negative acceleration, high positive accelerations, high jerk, and high frequency content that add to the complexity of this simulation. The simulated door velocity is produced by means of a MTS deceleration brake that only applies a braking force during the deceleration portion of the waveform to maximize acceleration capacity.
Technical Paper

Predicting Tire Handling Performance Using Neural Network Models

2004-03-08
2004-01-1574
Recent studies have shown that complex vehicle components such as shock absorbers, rubber bushings, and engine mounts can be accurately modeled by combining laboratory measurements with neural network technology. These nonlinear dynamic blackbox models (also known as Empirical Dynamics1 models) make it possible to predict nonlinear and hysteretic component behavior over wide ranges of amplitude and frequency. The models can handle realistic input waveforms as well as multiple inputs and multiple outputs. These techniques have now been applied to rolling pneumatic tires, to enable high accuracy predictions of tire and vehicle handling behavior. Models that predict high amplitude force components (three forces and three moments) using up to four randomly-varying inputs (radial deflection, slip angle, and camber angle, and slip ratio) have been successfully generated, using data obtained from MTS Flat-Trac III tire test equipment.
Technical Paper

Integration of Physical and Virtual Tools for Virtual Prototype Validation and Model Improvement

2003-10-27
2003-01-2813
Hyundai Motor Company has combined physical and virtual testing tools to validate a full vehicle virtual prototype. Today a large number of physical tests are still required because the cycle of “design-build-test-change” relies on complex models of components and systems that typically are not easily validated. In order to shorten the development cycles, engineers perform multi-body simulations to dynamically excite components and systems and thereby estimate their durability under dynamic loads. The approach described herein demonstrates the feasibility of correlating the output from the corresponding physical and virtual prototype. Both synthetic and road load events are employed to excite physical and virtual vehicles, reveal difference in response, and ultimately improve the predictive capability of the model.
Technical Paper

Sound Decomposition - A Key to Improved Sound Simulation

2003-05-05
2003-01-1423
The sound field in a vehicle is one of the most complex environments being a mixture of multiple, correlated and uncorrelated sound sources. The simulation of vehicle interior sound has traditionally been produced by combining multiple test results where the influence of one source is enhanced while the other sources are suppressed, such as towing the vehicle on a rough surface for road noise, or measuring noise in a wind tunnel. Such methods are costly and provide inherent inaccuracies due to source contamination and lack of synchronization between sources. In addition they preclude the addition of analytical predictions into the simulation. The authors propose an alternative approach in which the component sounds are decomposed or separated from a single operating measurement and which provide the basis for accurate sound synthesis.
Technical Paper

Excitation Control for Consistent Modal Parameters When Testing Nonlinear Structures

2003-05-05
2003-01-1629
Many structures of practical interest exhibit a significant degree of nonlinearity. In such cases, the modal frequencies, damping, and amplitudes will change depending upon the excitation force level, response level and spectrum shape. When reporting the measured modal parameters from an artificial excitation test, the excitation conditions and response levels should be specified, and different modal models may be needed to represent the structural dynamics at different response amplitude levels. If the frequency responses are measured by moving accelerometers in multiple test runs, then it is important to maintain a consistent response level for all test runs. This paper describes a method to eliminate the variability of the response level between data sets by means of closed-loop control of the RMS level. The amplitude control program uses a nonlinear gain estimation technique to set the gain on a “proportional-integral” controller.
Technical Paper

Tools for Integration of Analysis and Testing

2003-05-05
2003-01-1606
The automotive vehicle design process has relied for many years on both analytical studies and physical testing. Testing remains to be required due to the inherent complexities of structures and systems and the simplifications made in analytical studies. Simulation test methods, i.e. tests that load components with forces derived from actual operating conditions, have become the accepted standard. Advanced simulation tools like iterative deconvolution methods have been developed to address this need. Analytical techniques, such as multi body simulation have advanced to the degree that it is practical to investigate the dynamic behavior of components and even full vehicles under the influence of operational loads. However, the approach of testing and analysis are quite unique and no seamless bridge between the two exists. This paper demonstrates an integrated approach to combine testing and analysis together in the form of virtual testing.
Technical Paper

An Examination of the Effect of Seat Free-Play on Modal Analysis Results

2003-05-05
2003-01-1598
With the amount of adjustability present in today's automotive seat, it is a given that some form of looseness and free-play will exist in the structure. The automotive seat community is commonly faced with free-play issues; this is a significant issue where modal analysis is concerned. Free-play creates a non-linear situation, causing a violation of the linear mathematics that modal analysis is based on. Obviously, this situation is not the ideal circumstances under which to perform modal testing and analysis, but 99.9% of the time, the receipt of better samples (reduced free-play) is not a likely option, and the test must still go on. Ideally, you would want to test this structure using random excitation with a shaker to minimize the nonlinearities and provide a repeatable input force.
Technical Paper

A Practical Implementation of ASAM-GDI on an Automated Model Based Calibration System

2003-03-03
2003-01-1030
The paper addresses the connectivity issues related to integrating an Automated Model Based Calibration System (MTS Atlas) to a dynamometer test bed data acquisition system using an ASAM-GDI Interface. The GDI (Generic Device Interface) implementation was chosen over other ASAM interfaces due to its real-time capabilities and the ability to host new GDI drivers as these drivers become available. A structured migration process is developed showing how a new interface standard can be implemented that integrates with legacy test equipment, yet provides a simple low cost mechanism allowing replacement of old or redundant equipment.
Technical Paper

A New System for Force and Moment Testing of Light Truck Tires

2003-03-03
2003-01-1272
Laboratory performance testing of larger tires requires system capability beyond larger diametric clearance and additional radial load capability. This paper describes a newly introduced Flat-Trac® tire test system designed for light truck tires and racing tires. Background on flat surface force and moment testing identifying the need for a system with more capability is presented. The MTS Flat-Trac LTR tire test system is introduced as a force and moment measurement system capable of testing light truck and racing tires. The first of these systems has been in operation at Bridgestone's Tokyo technical center since July 2002. Test results are presented to show that the Flat-Trac LTR (Light Truck/Racing) provides increased capability beyond the conventional Flat-Trac III CT (Cornering and Traction) system. Cornering force and longitudinal force test results are compared to show agreement between the Flat-Trac LTR and Flat-Trac CT systems.
Technical Paper

Development of a Target Vehicle Model For Vehicle-To-Vehicle Simulations: Part II Vehicle-To-Vehicle Impactsy

2002-03-04
2002-01-0248
The objective of this study is to verify the performance of a target vehicle model in vehicle-to-vehicle impact applications. In some vehicle-to-vehicle tests, the target vehicle stays the same and the bullet vehicle changes from test to test depending on the programs under evaluation. To obtain reasonable crash pulse predictions in vehicle-to-vehicle impacts, it was decided to develop an accurate and robust target vehicle model first. The development of the target vehicle model was divided into two phases, rigid barrier and vehicle-to-vehicle impacts. Twelve rigid barrier tests, including full rigid barriers, angular rigid barriers, offset rigid barriers, and fixed rigid poles were adopted in the first phase of the study to calibrate the target vehicle model. The results of the study have been reported [1]. This paper focuses on the verification of vehicle-to-vehicle impacts.
Technical Paper

Correlation and Accuracy of a Wheel Force Transducer as Developed and Tested on a Flat-Trac® Tire Test System

1999-03-01
1999-01-0938
The wheel force transducer has been proven to be a cost and time effective tool for vehicle load data acquisition and simulation testing. The accuracy of wheel force transducers is typically given in terms of a static calibration, or a quasi-static system generated load case. The actual use of a wheel force transducer often involves high speed rotation, varying camber and steer of the tire on the vehicle, and other dynamic and rim related variations which deviate from the standard laboratory calibration. The Flat-Trac proves to be an excellent tool in the design process and evaluation of the wheel force transducer because it accurately controls and simulates the loading of a rotating wheel assembly. Through Flat-Trac System testing, issues that are critical to the use, accuracy, and integrity of data acquired through a wheel force transducer can be evaluated.
Technical Paper

The Use of Fatigue Sensitive Critical Locations in Correlation of Vehicle Simulation and In-Service Environments

1988-04-01
880807
A major challenge facing the vehicle simulation test laboratory is correlating (and thereby validating) the simulated “test track” with the In-service environment. This simulation is key to the use of data for durability analysis from the integrated design and testing engineering process. Presented here is an approach to integrating road simulation test and fatigue life analysis that produces needed results for test, design and analysis engineers. The core of the analysis is a fatigue-based “rig-to-road” comparison for an on-highway vehicle using strain-time data acquired at fatigue sensitive locations. The cyclic and fatigue damaging content of the field and simulation profiles are compared quantitatively for purposes of validating the laboratory lest, and to illustrate a method of reporting this validation to design and analysis engineers.
X