Refine Your Search

Topic

Author

Search Results

Technical Paper

The Root-Cause Analysis of Engine Stall at Hot Ambient Resulted from Low Pressure Fuel Pump

2022-03-29
2022-01-0624
In case of all gasoline vehicles such as the passenger vehicle, heavy duty truck and light duty truck etc., a fuel pump is located inside the fuel tank and transfers the fuel to an engine for stable driving, however, engine stall can be occurred by low pressure fuel pump. The boiling temperature of gasoline fuel is very low, the initial boiling point is around 40°C so fuel can boil easily while driving and end boiling point is around 190°C. It boils sequentially depending on the temperature. It becomes the criteria to determine the amount of vapor released inside the fuel tank at high temperature. The main cause of engine stall at high temperature is rapid fuel boiling by increasing fuel temperature. This causes a lot of vapor. Such vapor flows into the fuel pump which leading to decrease the pump load and the current consumption of the fuel pump continuously. This ultimately results in engine stall.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Energy-Optimal Deceleration Planning System for Regenerative Braking of Electrified Vehicles with Connectivity and Automation

2020-04-14
2020-01-0582
This paper presents an energy-optimal deceleration planning system (EDPS) to maximize regenerative energy for electrified vehicles on deceleration events perceived by map and navigation information, machine vision and connected communication. The optimization range for EDPS is restricted within an upcoming deceleration event rather than the entire routes while in real time considering preceding vehicles. A practical force balance relationship based on an electrified powertrain is explicitly utilized for building a cost function of the associated optimal control problem. The optimal inputs are parameterized on each computation node from a set of available deceleration profiles resulting from a deceleration time model which are configured by real-world test drivings.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 2, Engine Testing

2019-04-02
2019-01-0242
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Recent studies have shown that the following technologies offer significant improvements to the efficiency of turbocharged GDI engines: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled EGR (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency-improving technologies are individually well-understood, in this study we directly compare these technologies to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). The technologies tested are applied to a boosted and direct injected (DI) gasoline engine and evaluated both individually and combined.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 1, Engine Simulation

2019-04-02
2019-01-0245
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Promising technologies under consideration are: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled exhaust gas recirculation (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency improving options are well-understood individually, in this study we directly compare them to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). For this purpose we undertake a comprehensive simulation of the above technology options using a GT-Power model of the engine with a kinetics based knock combustion sub-model to optimize the fuel efficiency, taking into account the total in-cylinder dilution effects, due to internal and external EGR, on the combustion.
Technical Paper

Development of 4-Cylinder 2.0L Gasoline Engine Cooling System Using 3-D CAE

2019-04-02
2019-01-0156
To satisfy the global fuel economy restrictions getting stricter, various advanced cooling concepts, like active flow control strategy, cross-flow and fast warm-up, have been applied to the engine. Recently developed Hyundai’s next generation 4-cylinder 2.0L gasoline engine, also adopts several new cooling subsystems. This paper reviews how 3-D CAE analysis has been extensively used to evaluate cooling performance effectively from concept phase to pre-production phase. In the concept stage, the coolant flow in the water jacket of cylinder head and block was investigated to find out the best one among the proposed concepts and the further improvement of flow was also done by optimizing cylinder head gasket holes. Next, 3-D temperature simulation was conducted to satisfy the development criteria in the prototype stage before making initial test engines.
Technical Paper

Development of the Wireless Power Transfer Technology for a Sliding Door

2019-04-02
2019-01-0485
The sliding door’s movement is 3-dimensional unlike the conventional door. So the electric power and signal are exchanged via the long ‘Power Cable’. It has a quite complex structure in order to be suitable to connect the vehicle’s body and the sliding door even during it’s moving. As the result, it is more expensive than conventional door’s one and the quality could not be guaranteed easily. In this paper, I have developed new technology which could transfer electric power by ‘wireless transfer’ in order to resolve the problem from using ‘Power cable’. I would propose the proper structure to transfer the electric power at any position of the sliding door without any physical connection. To transfer the electric power which drives the window regulator and the actuators in door, I have applied the ‘inductive coupling’ system.
Technical Paper

Prediction of In-Cylinder Pressure for Light-Duty Diesel Engines

2019-04-02
2019-01-0943
In recent years, emission regulations have been getting increasingly strict. In the development of engines that comply with these regulations, in-cylinder pressure plays a fundamental role, as it is necessary to analyze combustion characteristics and control combustion-related parameters. The analysis of in-cylinder pressure data enables the modelling of exhaust emissions in which characteristic temperature can be derived from the in-cylinder pressure, and the pressure can be used for other investigations, such as optimizing efficiency and emissions through controlling combustion. Therefore, a piezoelectric pressure sensor to measure in-cylinder pressure is an essential element in the engine research field. However, it is difficult to practice the installation of this pressure sensor on all engines and on-road vehicles owing to cost issues.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion

2019-04-02
2019-01-0207
Numerical investigation of engine performance and emissions of a six-stroke gasoline compression ignition (GCI) engine combustion at low load conditions is presented. In order to identify the effects of additional two strokes of the six-stroke engine cycle on the thermal and chemical conditions of charge mixtures, an in-house multi-dimensional CFD code coupled with high fidelity physical sub-models along with the Chemkin library was employed. The combustion and emissions were calculated using a reduced chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Two power strokes per cycle were achieved using multiple injections during compression strokes. Parametric variations of injection strategy viz., individual injection timing for both the power strokes and the split ratio that enable the control of combustion phasing of both the power strokes were explored.
Technical Paper

Numerical Study on Fluid Flow and Heat Transfer Characteristics of a Ventilated Brake Disc Connected to a Wheel

2018-10-05
2018-01-1878
The role of a brake disc is to convert the kinetic energy of automobiles into thermal energy caused by friction between the brake pads and disc surfaces. The braking performance of an overheated disc is decreased due to hot judder and fade. Hence, the cooling technology of a brake disc is one of the most important issues related to automobile safety. In the present study, the fluid flow and heat transfer analysis of a ventilated brake disc are conducted numerically. Some geometries of automotive parts such as bearings, hubs and wheels are considered in this study. The commercial code ANSYS CFX is used to simulate the fluid flow and the conjugate heat transfer which includes conduction and convection. To evaluate the cooling performance in each case, the results, including the flow patterns of cooling air inside the wheel and the heat transfer coefficient distribution at the disc surfaces, were investigated and compared for various disc-hub combinations.
Technical Paper

A Study of the Disc Scoring Generation Principle and Reduction (II)

2018-10-05
2018-01-1891
In the latest paper [10], we presented our work based on experiments studying MPU (Metal Pick Up) of the pad and scoring(scratching) of the disc. The main component of MPU was iron “Fe”. If the roughness of the disc was small, the content of iron “Fe” was increased and the segregation of that was decreased especially in initial condition. In this study, we extended our study based on the results by adding some additional factors such as the location of the roughness of the disc, the coefficients brake pad friction, and disc slots. We made various discs of different roughness boundaries and slots, and pads of pad friction coefficients; and conducted two types of tests for whether a slot is present or not with the other same conditions to confirm the impact of the scoring. We find and believe that our experimental data should serve a useful guideline for reducing MPU of the pad and scoring of the disc.
Technical Paper

Optimization of Slot Disc Shape for Improving Brake Fade Performance

2018-10-05
2018-01-1883
Due to improvements in vehicle powertrain performance, friction material fade performance is becoming an important topic. For this reason, needs for studies to improve thermal characteristics of the brake system is increasing. Methods for improving the fade characteristics have several ways to improve the thermal characteristic of friction materials and increase disc capacity. However, increasing disc capacity(size) have some risk of weight and cost rise, and friction factor improvements in friction material tend to cause other problems, such as increasing squeal wire brush noise and increasing metal pick up on disc surface. Therefore, a slot disc study is needed to overcome the problems discussed previously. Currently, there is few research history for slot disc related to fade and metal pickup improvements.
Journal Article

A Study of the Disc Scoring Generation Principle and Reduction

2017-09-17
2017-01-2501
Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Success of doing this properly causes more heat to the disc in the brake system which results in the deformation or scratches on the surface of it and a reduction in the appearance of the product. A study for detailed factors to aggravate this was done as a solution to prevent these from happening. In this paper, we present our work based on experiments to study MPU (Metal Pick Up) of the pad and the scoring(scratching) of the disc. MPU of which the main component is “Fe”, is formed through the process of fusing the separated materials from the disc by friction with the pad, and by local heat generation to the pad. [1,2,3,4,5] The occurrence of MPU and the possibility of the disc scoring resulting from this were studied by noting “Fe” which was transferred to the surface of the pad to different extent and degree of segregation according to the roughness of the disc.
Technical Paper

Analysis of Rear Brake Grinding Noise by Rear Suspension Types

2017-09-17
2017-01-2486
Brake grinding noise is caused by the friction of the disc and pads. The friction generates vibration and it transmits to the body via the chassis system. We called it structure-borne noise. To improve the noise in the vehicle development, the aspects of chassis or body's countermeasure occurs many problems, cost and time. In this reason many brake companies try to make solution with brake system, like brake pad materials or disc surface condition. However the countermeasures of excitation systems also have a lot of risk. It could be occurred side-effects of braking performance, and need to re-verify brake noise like Creep-groan, Groan, Squeal, Judder and so on. For this reason, it is essential to make a robust chassis system in the initial development stage of the vehicle for the most desirable grinding noise-resistant vehicle. This paper is about rear brake grind noise path analysis and countermeasure of chassis system. There are two steps to analysis.
Technical Paper

The Root Cause Analysis of Steel Fuel Tank Cracking at a Fatigue Point and Test Method Development of Durability

2017-03-28
2017-01-0393
Fuel tank in vehicle must hold the fuel in a stable way under any driving condition. However, the fuel tank might not conserve the fuel firmly in case a crack emerged while the fuel tank is exposed to different driving condition. Basically, when the engine is in purging at a normal ambient temperature before fuel boiling, the pressure inside the fuel tank decreases. However, the pressure inside a fuel tank increases while a vehicle is driven at extreme hot ambient temperature as fuel is boiling. This repetitive pressure change in the fuel tank comes with fuel tank’s physical expansion and shrink, which would cause a damage to the fuel tank. The main purpose of this research is to investigate the root cause of why fuel tank cracks at a fatigue point. We also aim to set up the method of how to test durability of the fuel tank in association with the pressure inside the tank.
Technical Paper

Development of Integrated Chassis Control for Limit Handling

2016-04-05
2016-01-1638
This paper presents the integrated chassis control(ICC) of four-wheel drive(4WD), electronic stability control(ESC), electronic control suspension(ECS), and active roll stabilizer(ARS) for limit handling. The ICC consists of three layers: 1) a supervisor determines target vehicle states; 2) upper level controller calculates generalized forces; 3) lower level controller, which is contributed in this paper, optimally allocates the generalized force to chassis modules. The lower level controller consists of two integrated parts, 1) longitudinal force control part (4WD/ESC) and 2) vertical force control part (ECS/ARS). The principal concept of both algorithms is optimally utilizing the capability of the each tire by monitoring tire saturation, with tire combined slip. By monitoring tire saturation, 4WD/ESC integrated system minimizes the sum of the tire saturation, and ECS/ARS integrated system minimizes the variance of the tire saturation.
Technical Paper

Virtual NOx sensor for Transient Operation in Light-Duty Diesel Engine

2016-04-05
2016-01-0561
Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Technical Paper

Bio-Based Composites and Their Applications for Auto Interior Parts

2016-04-05
2016-01-0512
Polylactide (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and sugar beets, has attracted much attention for automotive parts application. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the PLA composites including stereocomplexed with L- and D-PLA, we developed the unit processes such as fermentation, separation, lactide conversion, and polymerization. We investigated D-lactic acid fermentation with a view to obtaining the strains capable of producing D-lactic acid, and through catalyst screening test for polycondensation and depolymerization reactions, we got a new method which shortens the whole reaction time of lactide synthesis step. Poly(d-lactide) is obtained from the ring-opening polymerization of d-lactide. Also we investigated several catalysts and polymerization conditions.
Technical Paper

A Study of Fuel Economy Improvement on US Fuel Economy Test Cycle by Model Based Cooled HP EGR System and Robust Logic through S-FMEA

2015-04-14
2015-01-1637
This paper focuses on the vehicle test result of the US fuel economy test cycles such as FTP75, HWY and US06 with model based Cooled EGR system. Cooled EGR SW function was realized by Model Based Development (internal rapid prototyping) using iRPT tool. With EGR, mixing exhaust gas with clean air reduces the oxygen concentration in the cylinder charge, as a result, the combustion process is slowed, and the combustion temperature drops. This experiment confirmed that the spark timing was more advanced without knocking and manifold pressure was increased in all cases with EGR. A positive potential of fuel economy improvement on FTP mode, US06 mode have seen in this experiment but not for HWY where the engine load is quite low and the spark advance is already optimized. As a result, fuel economy was increased by maximum 3.3% on FTP, 2.7% on US06, decreased by 0.3% on HWY mode respectively with EGR.
Technical Paper

A Study on the Transfer Path Analysis of Brake Creep Groan Noise

2014-09-28
2014-01-2510
Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. It is caused by the stick-sleep phenomenon at the lining and disc interface. Recently, the field claim of low frequency creep groan has increased. There are a lot of efforts to improve creep groan noise by means of modification of lining material. In this paper, Transfer path of creep groan noise was analyzed through ODS and TPA. Additionally the correlation between Source (Brake torque variation, Brake vibration) and Creep Groan Sound level was discussed. Finally countermeasure to Creep Groan noise was suggested.
X