Refine Your Search

Topic

Search Results

Training / Education

AS13100 and RM13000 8D Problem Solving Requirements for Suppliers

2024-08-29
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. AS13100 and RM13000 define the Problem-Solving standard for suppliers within the aero-engine sector, with the Eight Disciplines (8D) problem solving method the basis for this standard. This two-day course provides participants with a comprehensive and standardized set of tools to become an 8D practitioner. Successful application of 8D achieves robust corrective and preventive actions to reduce the risk of repeat occurrences and minimize the cost of poor quality.
Technical Paper

Terrain Streaming for Real-Time Vehicle Dynamics

2024-04-09
2024-01-2659
This paper describes an approach to integrating high-fidelity vehicle dynamics with a high-fidelity gaming engine, specifically with respect to terrain. The work is motivated by the experimental need to have both high-fidelity visual content with high-fidelity vehicle dynamics to drive a motion base simulator. To utilize a single source of terrain information, the problem requires the just-in-time sharing of terrain content between the gaming engine and the dynamics model. The solution is implemented as a client-server with the gaming engine acting as a stateless server and the dynamics acting as the client. The client is designed to actively maintain a locally cashed terrain grid around the vehicle and actively refresh it by polling the server in an on-demand mode of operation. The paper discusses the overall architecture, the protocol, the server, and the client designs. A practical implementation is described and shown to effectively function in real-time.
Technical Paper

Transforming AADL Models Into SysML 2.0: Insights and Recommendations

2024-03-05
2024-01-1947
In recent years, the increasing complexity of modern aerospace systems has driven the rapid adoption of robust Model-Based Systems Engineering (MBSE). MBSE is a development methodology centered around computational models, which are instrumental in supporting the design and analysis of intricate systems. In this context, the Architecture Analysis and Design Language (AADL) and Systems Modeling Language (SysML) are two prominent modeling languages for specifying and analyzing the structure and behavior of a cyber-physical system. Both languages have their own specific use cases and tool environments and are typically employed to model different aspects of system design. Although multiple software tools are available for transforming models from one language to another, their effectiveness is limited by fundamental differences in the semantics of each language.
Standard

Requirements for Conducting Audits of Aviation, Space, and Defense Quality Management Systems

2022-11-29
CURRENT
AS9101G
This standard defines requirements for the preparation and execution of the audit process. In addition, it defines the content and composition for the audit reporting of conformity and process effectiveness to the 9100-series standards, the organization's QMS documentation, and customer and statutory/regulatory requirements. The requirements in this standard are additions or represent changes to the requirements and guidelines in the standards for conformity assessment, auditing, and certification as published by ISO/IEC (i.e., ISO/IEC 17000, ISO/IEC 17021-1). When there is conflict with these standards, the requirements of the 9101 standard shall take precedence.
Journal Article

Predictive Modeling of Aircraft Dynamics Using Neural Networks

2022-05-25
Abstract Fighter pilots must study models of aircraft dynamics before learning complex maneuvers and tactics. Similarly, autonomous fighter aircraft applications may benefit from a model-based learning approach. Instead of using a preexisting physics model of a given aircraft, a machine learning system can learn a predictive model of the aircraft physics from training data. Furthermore, it can model interactions between multiple friendly aircraft, enemy aircraft, and the environment. Such a system can also learn to represent state variables that are not directly observable, as well as dynamics that are not hard coded. Existing model-based methods use a deep neural network that takes observable state information and agent actions as input and provides predictions of future observations as output. The proposed method builds upon this approach by adding a residual feedforward skip connection from some of the inputs to all of the outputs of the deep neural network.
Magazine

Aerospace & Defense Technology: December 2020

2020-12-01
How Solid-State Technology Impacts A&D Equipment Testing The Role of Prototype/Test Systems in Next-Generation C5ISR Development Using Advanced Computational Engineering Software to Meet Aerospace & Defense Industry Challenges How Advanced Vacuum Bag Kits Streamline Composite Parts Manufacturing Replacing Multiple RF Receivers with Just One Using Channelization Air Force Technology Tracks "Sporadic E" Progress on Zirconia-Polyurea Matrix Hybrid Composites Incorporating zirconia particles into polyurea elastomers to form hybrid composites and designing them into state-of-the-art body armor has the potential to achieve lightweight ballistic efficiency. Bioenvironmental Engineering Guide for Composite Materials Developing a comprehensive baseline for identifying, evaluating, and controlling occupational and environmental hazards associated with composite fibers and materials for base-level Bioenvironmental Engineering (BE) personnel.
Standard

Requirements for Aviation, Space, and Defense Auditor Training, Development, Competence, and Authentication

2020-11-11
CURRENT
AS9104/3A
This document defines the minimum requirements for auditors, CBs, Auditor Authentication Bodies (AABs), Training Provider Approval Bodies (TPABs), and Training Providers (TPs) who participate in the IAQG Industry Controlled Other Party (ICOP) scheme. The requirements in this standard supplement those defined within the 9104/1, 9104/2, ISO/IEC 17021-1, and ISO/IEC 17021-3 standards. Data protection for the parties subject to this document and other relevant requirements of the ICOP scheme are managed via bi-lateral contracts between the joint controllers of the data.
Book

How to Manage the Perfect Factory or How AS6500 Can Lead To Everlasting Happiness

2020-10-01
Why AS6500? Where did it come from? Why does it exist? Those are easy questions to answer. It came from the inspiration of angels and it exists to make your life, and your factory, more perfect. That's why, when you open the standard, you can still hear the faint echoes of the singing of angels. Actually, experts were gathered from across the country, both from the Defense Department and from industry to create the new document. They toiled away until the perfect product emerged from the fruit of their labors: Aerospace Standard AS6500, "Manufacturing Management Program," published in November 2014. How to Manage the Perfect Factory combines education and instruction with fun, laughter and motivation. The book gently pokes fun at the people and organizational barriers that the Manufacturing function must overcome to make those obstacles seem more surmountable while providing key information on implementing AS6500.
Training / Education

Model-Based Engineering Overview for Systems Management Practitioners

Use of Model-Based Systems Engineering (MBSE) has been growing across industry, extending beyond defense and aerospace to include various commercial enterprises such as automotive and healthcare. Tool vendors are quick to point out benefits of this model-based approach and practices but are not always clear how MBSE benefits can be realized on a project. When deployed successfully, several key considerations should be addressed that maximize the value for a use-case. This four-hour class will discuss the nature and purpose of the MBSE approach and how key information is used for successful MBSE deployment as it relates to Systems Management.
Journal Article

Threat Identification and Defense Control Selection for Embedded Systems

2020-08-18
Abstract Threat identification and security analysis have become mandatory steps in the engineering design process of high-assurance systems, where successful cyberattacks can lead to hazardous property damage or loss of lives. This article describes a novel approach to perform security analysis on embedded systems modeled at the architectural level. The tool, called Security Threat Evaluation and Mitigation (STEM), associates threats from the Common Attack Pattern Enumeration and Classification (CAPEC) library with components and connections and suggests potential defense patterns from the National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53 security standard. This article also provides an illustrative example based on a drone package delivery system modeled in AADL.
Research Report

Unsettled Issues Concerning Integrated Vehicle Health Management Systems and Maintenance Credits

2020-05-27
EPR2020006
The “holy grail” for prognostics and health management (PHM) professionals in the aviation sector is to have integrated vehicle health management (IVHM) systems incorporated into standard aircraft maintenance policies. Such a change from current aerospace industry practices would lend credibility to this field by validating its claims of reducing repair and maintenance costs and, hence, the overall cost of ownership of the asset. Ultimately, more widespread use of advanced PHM techniques will have a positive impact on safety and, for some cases, might even allow aircraft designers to reduce the weight of components because the uncertainty associated with estimating their predicted useful life can be reduced. We will discuss how standard maintenance procedures are developed, who the various stakeholders are, and – based on this understanding - outline how new PHM systems can gain the required approval to be included in these standard practices.
Journal Article

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

2020-04-14
2020-01-0176
The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
Magazine

Aerospace & Defense Technology: February 2020

2020-01-30
Rad-Hard Microelectronics for Space Applications Outsourcing Plasma Treatments for Surface Modification Adding Context to Full-Motion Video for Improved Surveillance and Situational Awareness Implementing an Aerospace Factory of the Future 90° Hybrid Coupled Power Amplifier - Pros and Cons A New Network Design for the "Internet from Space" Future Advances in Electronic Materials and Processes - Flexible Hybrid Electronics Despite progress being made, there are still significant obstacles to the manufacture and use of flexi-ble hybrid electronics in military applications. Heterogeneous Integration Technology Integrating different types of devices and materials could increase their functional density, improving the performance of electro-optic systems for sensor applications. The Impact of Cyber Cameras on the Intelligence Community The ability to covertly access and manipulate cyber cameras could provide valuable strategic data for the US intelligence community.
Standard

Perspectives on Integrating Structural Health Monitoring Systems into Fixed-Wing Military Aircraft

2019-09-18
CURRENT
AIR6245
This SAE Aerospace Information Report (AIR) is prepared for stakeholders seeking information about the evolution, integration, and approval of SHM technologies for military aircraft systems. The report provides this information in the form of (a) two military organizations’ perspectives on requirements, and (b) general SHM challenges and industry perspectives. The report only provides information to generate awarness of prespectives for military aircraft and, hence, assists those who are involved in developing SHM systems understanding the broad range of regulations, requirements, and standards published by military organizations that are available in the public domain from the military organizations.
Journal Article

Building Multiple Resolution Modeling Systems Using the High-Level Architecture

2019-09-16
2019-01-1917
The modeling and simulation pyramid in defense states it clearly: Multi-Level modeling and simulation are required. Models and simulations are often classified by the US Department of Defense into four levels—campaign, mission, engagement, and engineering. Campaign simulation models are applied for evaluation; mission-level simulations to experiment with the integration of several macro agents; engagement simulations in engineered systems development; and engineering-level simulation models with a solid foundation in structural physics and components. Models operating at one level must be able to interact with models at another level. Therefore, the cure (“silver bullet”) is very clear: a comprehensive framework for Multiple Resolution Modeling (MRM) is needed. In this paper, we discuss our research about how to construct MRM environments.
Standard

S400 Copper Media Interface Characteristics Over Extended Distances

2019-07-09
CURRENT
AS5643/1A
This SAE Aerospace Standard (AS) establishes guidelines for the use of IEEE-1394-2008 Beta (formerly IEEE-1394b) as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths. This document contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document does not identify specific environmental requirements (electromagnetic compatibility, temperature, vibration, etc.); such requirements will be vehicle-specific and even LRU-specific. However, the hardware requirements and examples contained herein do address many of the environmental conditions that military and aerospace vehicles may experience. One should refer to the appropriate sections of MIL-STD-461E for their particular LRU, and utilize handbooks such as MIL-HDBK-454A and MIL-HDBK-5400 for guidance.
X