Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Degradation of DeNOx Performance of a Urea-SCR System in In-Use Heavy-Duty Vehicles Complying with the New Long-Term Regulation in Japan and Estimation of its Mechanism

2016-04-05
2016-01-0958
Degradation of the deNOx performance has been found in in-use heavy-duty vehicles with a urea-SCR system in Japan. The causes of the degradation were studied, and two major reasons are suggested here: HC poisoning and deactivation of pre-oxidation catalysts. Hydrocarbons that accumulated on the catalysts inhibited the catalysis. Although they were easily removed by a simple heat treatment, the treatment could only partially recover the original catalytic performance for the deNOx reaction. The unrecovered catalytic activity was found to result from the decrease in conversion of NO to NO2 on the pre-oxidation catalyst. The pre-oxidation catalyst was thus studied in detail by various techniques to reveal the causes of the degradation: Exhaust emission tests for in-use vehicles, effect of heat treatment on the urea-SCR systems, structural changes and chemical changes in active components during the deactivation were systematically investigated.
Technical Paper

A Study on the Improvement of NOx Reduction Efficiency for a Urea SCR System

2015-09-01
2015-01-2014
Urea SCR (Selective Catalytic Reduction) exhaust after-treatment systems are one of the most promising measures to reduce NOx emissions from diesel engines. Both Cu-zeolite (Cu-SCR) and Fe-zeolite (Fe-SCR) urea SCR systems have been studied extensively but not many detailed studies have been conducted on the combination of both systems. Thus, we carried out studies on such Combined-SCR systems and their capability to reduce NOx under various engine operating conditions. We also conducted transient engine tests using different catalyst systems to compare their performance. The results show that combined-SCR systems can reduce NOx more effectively than Fe-SCR or Cu-SCR alone. The best NOx reduction performance was achieved at a Cu ratio of 0.667 (i.e. Fe: Cu =1: 2). Combined-SCR thus apparently benefits from the characteristics of both Cu-SCR and Fe-SCR, allowing it to reduce NOx over a wide range of operating conditions.
Technical Paper

Evaluation of Real- World Emissions from Heavy-Duty Diesel Vehicle Fueled with FAME, HVO and BTL using PEMS

2014-10-13
2014-01-2823
Widespread use of biofuels for automobiles would greatly reduce CO2 emissions and increase resource recycling, contributing to global environmental conservation. In fact, activities for expanding the production and utilization of biofuels are already proceeding throughout the world. For diesel vehicles, generally, fatty acid methyl ester (FAME) made from vegetable oils is used as a biodiesel. In recent years, hydrotreated vegetable oil (HVO) has also become increasingly popular. In addition, biomass to liquid (BTL) fuel, which can be made from any kinds of biomass by gasification and Fischer-Tropsch process, is expected to be commercialized in the future. On the other hand, emission regulations in each country have been tightened year by year. In accordance with this, diesel engines have complied with the regulations with advanced technologies such as common-rail fuel injection system, high pressure turbocharger, EGR and aftertreatment system.
Technical Paper

A Study on the Improvement of NOx Emission Performance in a Diesel Engine Fuelled with Biodiesel

2013-10-14
2013-01-2677
The use of biofuel is essential for the reduction of greenhouse gas emission. This study highlights the use of biodiesel as a means of reducing greenhouse gas emission from the diesel engine of heavy-duty vehicles. Biodiesel is fatty acid methyl ester (FAME) obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. The CO2 emission from combustion of biodiesel is defined to be equivalent to the CO2 volume absorbed by its raw materials or plants in their course of growth. On the other hand, however, operation of diesel engine with biodiesel is known to increase the NOx emission when compared with that with conventional diesel fuel. Then suppressing this NOx increase is regarded as a critical issue. This paper consists of two parts: comprehending the factors of NOx emission increase and improving this emission performance in a diesel engine fuelled with biodiesel.
Technical Paper

Next-Generation Environmentally Friendly Vehicles Development and Commercialization Project (3rd Stage) in Japan

2013-03-10
2012-01-2085
As alternatives to heavy-duty vehicles, this project seeks to promote the development of Next-Generation EFVs, which will present a solution to the severe air pollution problem particularly in big cities, and drastically improve exhaust gas emissions and reduce carbon dioxide emissions in order to lessen the contribution to global warming. Ministry of Land, Infrastructure, Transport and Tourism (MLIT) started the Next-Generation Environmentally Friendly Vehicles Development and Commercialization Project in 2002. MLIT at that time entrusted this project to National Traffic Safety and Environment Laboratory (NTSEL). NTSEL as a core research organization organized a cooperative system with automobile manufacturers, suppliers, universities, academic experts, that is to say, “industry-academic-government” and launched the development activities.
Technical Paper

A Study on N2O Formation Mechanism and Its Reduction in a Urea SCR System Employed in a DI Diesel Engine

2012-09-10
2012-01-1745
N₂O is known to have a significantly high global warming potential. We measured N₂O emissions in engine-bench tests by changing the NO/NH₃ ratio and exhaust gas temperature at the oxidation catalyst inlet in a heavy-duty diesel engine equipped with a urea SCR (selective catalytic reduction) system. The results showed that the peak N₂O production ratio occurred at an exhaust gas temperature of around 200°C and the maximum value was 84%. Moreover, the N₂O production ratio increased with increasing NO/NH₃. Thus, we concluded that N₂O is produced via the NO branching reaction. Based on our results, two methods were proposed to decrease N₂O formation. At low temperatures ~200°C, NO should be reduced by controlling diesel combustion to lower the contribution of NO to N₂O production. This is essential because the SCR system cannot reduce NOx at low temperatures.
Technical Paper

BSFC Improvement and NOx Reduction by Sequential Turbo System in a Heavy Duty Diesel Engine

2012-04-16
2012-01-0712
Reduction of exhaust emissions and BSFC has been studied using a high boost, a wide range and high-rate EGR in a Super Clean Diesel, six-cylinder heavy duty engine. In the previous single-turbocharging system, the turbocharger was selected to yield maximum torque and power. The selected turbocharger was designed for high boosting, with maximum pressure of about twice that of the current one, using a titanium compressor. However, an important issue arose in this system: avoidance of high boosting at low engine speed. A sequential and series turbo system was proposed to improve the torque at low engine speeds. This turbo system has two turbochargers of different sizes with variable geometry turbines. At low engine speed, the small turbocharger performs most of the work. At medium engine speed, the small turbocharger and large turbocharger mainly work in series.
Technical Paper

Effect of Fuel Properties of Biodiesel on Its Combustion and Emission Characteristics

2011-08-30
2011-01-1939
The use of biofuel is essential for the reduction of greenhouse gas emission. This paper highlights the use of biodiesel as a means of reducing greenhouse gas emission from the diesel engine of heavy-duty vehicles. Biodiesel is fatty acid methyl ester (FAME) obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. The CO₂ emission from combustion of biodiesel is defined to be equivalent to the CO₂ volume absorbed by its raw materials or plants in their course of growth. On the other hand, however, biodiesel is known to increase the NOx emission when compared with operating with conventional diesel fuel, then suppressing this increase is regarded as a critical issue. This study is intended to identify the fuel properties of biodiesel free from increase in the NOx emission.
Technical Paper

Development of High Pressure H2 Gas Injectors, Capable of Injection at Large Injection Rate and High Response Using a Common-rail Type Actuating System for a 4-cylinder, 4.7-liter Total Displacement, Spark Ignition Hydrogen Engine

2011-08-30
2011-01-2005
Key requirements of engines for vehicles are large output power and high efficiency, low emission as well as small size and light weight. Hydrogen combustion engines with direct injection have the characteristics to meet these factors. Tokyo City University, former Musashi Institute of Technology, has studied hydrogen fueled engines with direct injection since 1971. The key technology in the development of hydrogen fueled engines is the hydrogen injector for direct injection with the features such as high injection rate, high response and no hydrogen gas leakage from the needle valve of the hydrogen injector. A common-rail type system to actuate the needle valves of the high pressure hydrogen injectors was intentionally applied to fulfill good performances such as large injection rate, high response and no hydrogen gas leakage.
Technical Paper

Effective BSFC and NOx Reduction on Super Clean Diesel of Heavy Duty Diesel Engine by High Boosting and High EGR Rate

2011-04-12
2011-01-0369
Reduction of exhaust emissions and BSFC was studied for high pressure, wide range, and high EGR rates in a Super-clean Diesel six-cylinder heavy duty engine. The GVW 25-ton vehicle has 10.52 L engine displacement, with maximum power of 300 kW and maximum torque of 1842 Nm. The engine is equipped with high-pressure fuel injection of a 200 MPa level common-rail system. A variable geometry turbocharger (VGT) was newly designed. The maximum pressure ratio of the compressor is about twice that of the previous design: 2.5. Additionally, wide range and a high EGR rate are achieved by high pressure-loop EGR (HP-EGR) and low pressure-loop EGR (LP-EGR) with described VGT and high-pressure fuel injection. The HP-EGR can reduce NOx concentrations in the exhaust pipe, but the high EGR rate worsens smoke. The HP-EGR system layout has an important shortcoming: it has great differences of the intake EGR gas amount into each cylinder, worsens smoke.
Journal Article

Effect of Biodiesel on NOx Reduction Performance of Urea-SCR System

2010-10-25
2010-01-2278
The use of biomass fuels for vehicles has been a focus of attention all over the world in terms of prevention of global warming, effective utilization of resources and local revitalization. For the purpose of beneficial use of unused biomass resources, the movement of the use of bioethanol and biodiesel made from them has spread in Japan. In Japan, biodiesel is mainly made from waste cooking oil collected by local communities or governments, and in terms of local production for local consumption, it is used as neat fuel (100% biofuel) or mixed with diesel fuel in high concentration for the vehicles. On the other hand, extremely low emission level must be kept for not only gasoline vehicles but also diesel vehicles in the post new long-term regulation implemented from 2009 in Japan.
Technical Paper

Exhaust Emission Characteristics of Commercial Vehicles Fuelled with Biodiesel

2010-10-25
2010-01-2276
The application of biodiesel as an alternative fuel for petroleum diesel fuel is very effective for the reduction of CO₂ emission, because biodiesel is produced from renewable biomass resources. In Japan, neat biodiesel derived from waste cooking oil has often been applied to commercial vehicles. However, it is possible that the difference of fuel properties between conventional diesel fuel and biodiesel causes the problems on exhaust emission characteristics of diesel engine. Therefore, it is necessary to clarify the effect of biodiesel fuelling on exhaust emissions from commercial vehicles. Light-duty garbage trucks and heavy-duty diesel buses which were actually fueled with biodiesel in Kyoto, Japan, were used for test vehicles in this study. The exhaust emissions from these vehicles during JE05 mode tests were compared between biodiesel derived from waste cooking oil and conventional diesel fuel.
Technical Paper

Effective Usage of LNT in High Boosted and High EGR Rate of Heavy Duty Diesel Engine

2010-04-12
2010-01-1066
Lean NOx trap (LNT) and Urea-SCR system are effective aftertreatment systems as NOx reduction device in diesel engines. On the other hand, DPF has already been developed as PM reduction device and it has been used in various vehicles. LNT can absorb and reduce NOx emission in wide range exhaust temperatures, from 150°C to 400°C, and the size of LNT component can be compact in comparison with Urea-SCR system because LNT uses the diesel fuel as a reducing agent and it is needless to install the reducing agent tank in the vehicle. In this study, authors have shown that the NOx conversion rate of LNT is high in the case of extremely low NOx concentration from the engine. Also, the effects of LNT and DPF were examined using the Super Clean Diesel (SCD) Engine, which has low NOx level before aftertreatment and has been finished as Japanese national project.
Technical Paper

Reduction of NOx and PM for a Heavy Duty Diesel Using 50% EGR Rate in Single Cylinder Engine

2010-04-12
2010-01-1120
For reducing NOx emissions, EGR is effective, but an excessive EGR rate causes the deterioration of smoke emission. Here, we have defined the EGR rate before the smoke emission deterioration while the EGR rate is increasing as the limiting EGR rate. In this study, the high rate of EGR is demonstrated to reduce BSNOx. The adapted methods are a high fuel injection pressure such as 200 MPa, a high boost pressure as 451.3 kPa at 2 MPa BMEP, and the air intake port that maintains a high air flow rate so as to achieve low exhaust emissions. Furthermore, for withstanding 2 MPa BMEP of engine load and high boosting, a ductile cast iron (FCD) piston was used. As the final effect, the installations of the new air intake port increased the limiting EGR rate by 5%, and fuel injection pressure of 200 MPa raised the limiting EGR rate by an additional 5%. By the demonstration of increasing boost pressure to 450 kPa from 400 kPa, the limiting EGR rate was achieved to 50%.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Journal Article

Analysis of Behavior of Fuel Consumption and Exhaust Emissions under On-road Driving Conditions Using Real Car Simulation Bench (RC-S)

2009-09-13
2009-24-0139
The investigation of vehicle performances under on-road conditions has been required for emission reduction and energy saving in the real world. In this study, Real Car Simulation Bench (RC-S) was developed as an instrument for actual vehicle bench tests under on-road driving conditions, which could not be performed by using conventional chassis dynamometer (CH-DY). The experimental results obtained by RC-S were compared with the on-road driving data on the same car as used in RC-S tests. As a result, it was confirmed that RC-S could accurately reproduce the behavior of fuel consumption and exhaust emissions under on-road driving conditions.
Technical Paper

Simultaneous Measurements of the Components of VOCs and PAHs in Diesel Exhaust Gas using a Laser Ionization Method

2009-06-15
2009-01-1842
A simple real-time measurement system for the components of volatile organic compounds (VOCs) and polyaromatic hydrocarbons (PAHs) in automobile exhaust gas using a laser ionization method was developed. This method was used to detect VOCs and PAHs in the exhaust gas of a diesel truck while idling, at 60 km/h, and in the Japanese driving mode JE05. As a result, various VOCs and PAHs, such as xylene and naphthalene, were simultaneously detected, and real-time changes in their concentration were obtained at 1 s intervals.
Technical Paper

Effective NOx Reduction in High Boost, Wide Range and High EGR Rate in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1438
The emission reduction from diesel engines is one of major issues in heavy duty diesel engines. Super Clean Diesel (SCD) Engine for heavy-duty trucks has also been researched and developed since 2002. The main specifications of the SCD Engine are six cylinders in-line and 10.5 l with a turbo-intercooled and cooled EGR system. The common rail system, of which the maximum injection pressure is 200 MPa, is adopted. The turbocharger is capable of increasing boost pressure up to 501.3 kPa. The EGR system consists of both a high-pressure loop (HP) EGR system and a low-pressure loop (LP) EGR system. The combination of these EGR systems reduces NOx and PM emissions effectively in both steady-state and transient conditions. The emissions of the SCD Engine reach NOx=0.2 g/kWh and PM=0.01 g/kWh with aftertreatment system. The adopted aftertreatment system includes a Lean NOx Trap (LNT) and Diesel Particulate Filter (DPF).
Journal Article

Optimization of PM Measurements with a Number Counting Method

2008-10-06
2008-01-2436
Repeatabilities of PM measurements on a heavy-duty diesel engine equipped with a diesel particulate filter (DPF) using a filter weighing method and a number counting method with a full flow dilution system and a partial flow system were evaluated. The filter method with partial flow exhibited the best repeatability. However, a good correlation between the full flow and the partial flow number counting results suggests that the fluctuations observed using the number counting method were caused by changes in the engine exhaust. Applying a strict preconditioning procedure should improve the repeatability of the number counting method because this method is more sensitive than the filter weighing method. In addition, the effects of the specifications for the number counting method were evaluated. The results indicate that the hose length from the tip of the sampling probe to the inlet of the number counting system had a negligible effect.
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
X