Refine Your Search

Search Results

Viewing 1 to 19 of 19
Journal Article

Expanding the Use of Robotics in Airframe Assembly Via Accurate Robot Technology

2010-09-28
2010-01-1846
Serial link articulated robots applied in aerospace assembly have largely been limited in scope by deficiencies in positional accuracy. The majority of aerospace applications require tolerances of +/−0.25mm or less which have historically been far beyond reach of the conventional off-the-shelf robot. The recent development of the accurate robot technology represents a paradigm shift for the use of articulated robotics in airframe assembly. With the addition of secondary feedback, high-order kinematic model, and a fully integrated conventional CNC control, robotic technology can now compete on a performance level with customized high precision motion platforms. As a result, the articulated arm can be applied to a much broader range of assembly applications that were once limited to custom machines, including one-up assembly, two-sided drilling and fastening, material removal, and automated fiber placement.
Journal Article

Applied Accurate Robotic Drilling for Aircraft Fuselage

2010-09-28
2010-01-1836
Once limited by insufficient accuracy, the off-the-shelf industrial robot has been enhanced via the integration of secondary encoders at the output of each of its axes. This in turn with a solid mechanical platform and enhanced kinematic model enable on-part accuracies of less than +/−0.25mm. Continued development of this enabling technology has been demonstrated on representative surfaces of an aircraft fuselage. Positional accuracy and process capability was validated in multiple orientations both in upper surface (spindle down) and lower surface (spindle up) configurations. A second opposing accurate robotic drilling system and full-scale fuselage mockup were integrated to simulate doubled throughput and to demonstrate the feasibility of maintaining high on-part accuracy with a dual spindle cell.
Journal Article

Utilization of a Vision System to Automate Mobile Machine Tools

2014-09-16
2014-01-2271
In an attempt to be more flexible and cost effective, Aerospace Manufacturers have increasingly chosen to adapt a manufacturing style which borrows heavily from the Automotive industry. To facilitate this change in methodologies a system for locating robots has been developed which utilizes cameras for both locating and guidance of a mobile platform for a robot with drilling and fastening end effector.
Journal Article

High Accuracy Articulated Robots with CNC Control Systems

2013-09-17
2013-01-2292
A robotic arm manipulator is often an appealing method to position drills, bolt inserters, automated fiber placement heads, or other end effectors. In a standard robot the flexibility of the cantilevered arm as well as backlash in the drive system lead to large positioning errors. Previous work has greatly reduced this error through the use of secondary scales and a mathematical model of the robot deflection running on a CNC controller. Further research improved upon this model by accounting for linear deformation of each robot link regardless of position. The parameters describing these deformations are determined through a calibration routine and then used in real time to guide the end effector accurately to any reachable pose. In practice this method has been used to achieve total on-part positioning accuracy of better than +/− 0.25mm.
Journal Article

Enhanced Robotic Automated Fiber Placement with Accurate Robot Technology and Modular Fiber Placement Head

2013-09-17
2013-01-2290
The process of robotic automated fiber placement has been enhanced by combining the technologies of an accurate articulated robotic system with a modular Automated Fiber Placement (AFP) head. The accurate robotic system is comprised of an off-the-shelf 6-axis KUKA Titan KR1000L750 riding on a linear axis with an option for an additional part rotator axis. Each of the robot axes is enhanced with secondary position encoders. The modular fiber placement head features a robotic tool changer which allows quick-change of the process heads and an onboard creel. The quick-change fiber placement head and simplified tow path yields terrific process reliability and flexibility while allowing head preparations to occur offline. The system is controlled by a Siemens 840Dsl CNC which handles all process functions, robot motion, and executes software technologies developed by Electroimpact for superior positional accuracy including enhanced kinematics utilizing a high-order kinematic model.
Journal Article

Plate Cartridge Compact Flexible Automatic Feed System

2016-09-27
2016-01-2080
The newest generation of automated fastening machines require a feed system that is smaller, more flexible, and faster than any currently available. The feed system must be compact enough to fit on a robot base, yet have a capacity large enough to support unmanned production for hours. A large variety of fasteners must be supported and the entire system must be reloaded or reconfigured in minutes to match the next work piece being assembled by the machine. When requested by the part program, the correct fastener must be released directly and immediately into the feed tube to minimize cycle time. This paper describes a new “plate cartridge” feed system developed to meet these needs.
Technical Paper

ONCE (ONe-sided Cell End effector) Robotic Drilling System

2002-09-30
2002-01-2626
The ONCE robotic drilling system utilizes a mass produced, high capacity industrial robot as the motion platform for an automated drilling, countersinking, and hole inspection machine for the skin to substructure join on the F/A-18E/F Super Hornet wing trailing edge flaps (TEF). Historically, robots have lacked the accuracy, payload capacity, and stiffness required for aerospace drilling applications. Recent improvements in positional accuracy and payload capacity, along with position and stiffness compensation, have enabled the robot to become an effective motion platform. Coupled with a servo-controlled multifunction end effector (MFEE), hole locations have successfully been placed within the specification's +/-0.060″ tolerance. The hole diameters and countersinks have proven to be very accurate, with countersink depth variation at 0.0025″ worst case.
Technical Paper

High-Accuracy Articulated Mobile Robots

2017-09-19
2017-01-2095
The advent of accuracy improvement methods in robotic arm manipulators have allowed these systems to penetrate applications previously reserved for larger, robustly supported machine architectures. A benefit of the relative reduced size of serial-link robotic systems is the potential for their mobilization throughout a manufacturing environment. However, the mobility of a system offers unique challenges in maintaining the high-accuracy requirement of many applications, particularly in aerospace manufacturing. Discussed herein are several aspects of mechanical design, control, and accuracy calibration required to retain accurate motion over large volumes when utilizing mobile articulated robotic systems. A number of mobile robot system architectures and their measured static accuracy performance are provided in support of the particular methods discussed.
Technical Paper

Frame-Clip Riveting End Effector

2013-09-17
2013-01-2079
A frame-clip riveting end effector has been developed for installing 3.97mm (5/32) and 4.6mm (3/16) universal head aluminum rivets. The end effector can be mounted on the end of a robot arm. The end effector provides 35.6 kNt (8000 lbs) of rivet upset. Rivets can be installed fifteen millimeters from the IML. The clearance allowed to rivet centerline is 150 millimeters. The riveting process features a unique style of rivet fingers for the universal head rivet. These fingers allow the rivet to be brought in with the ram. This differentiates from some styles of frame-clip end effectors in which the rivet is blown into the hole. The paper shows the technical components of the end effector in sequence: the pneumatic clamp, rivet insert and upset. The end effector will be used for riveting shear ties to frames on the IML of fuselage panels.
Technical Paper

Mobile Automated Robotic Drilling, Inspection, and Fastening

2013-09-17
2013-01-2338
The versatility of the accurate robot has been increased by coupling it with a mobile platform with vertical axis. The automation can be presented to fixed aircraft components such as wings, fuselage sections, flaps, or other aircraft assemblies requiring accurate drilling, inspection, and fastening. The platform accommodates a tool changer, ride along coupon stand, fastener feed system, and other systems critical for quality automated aircraft assembly. The accurate robot's flexibility is increased by a floor resynchronization system. The indexing system is replaced by an automated two-camera onboard vision system and miniature targets embedded in the factory floor, with accuracy comparable to cup and cone alternatives. The accurate robot can be deployed by casters, curvilinear rail, or air bearings.
Technical Paper

High Path Accuracy, High Process Force Articulated Robot

2013-09-17
2013-01-2291
Spirit AeroSystems' process of producing carbon fiber nacelle panels requires heat and high force plus a high level of dynamic accuracy. Traditionally this would require large and expensive custom machines. A low cost robotic alternative was developed to perform the same operations utilizing an off-the-shelf 6-axis robot mated to a servo-controlled linear axis. Each of the 7 axes is enhanced with secondary position encoders and the entire system is controlled by a Siemens 840Dsl CNC. The CNC handles all process functions, robot motion, and executes software technologies developed for superior dynamic positional accuracy, including enhanced kinematics. The layout of the work cell allowed the robot to span two work zones so that parts can be loaded and unloaded while the robot continues working in the adjacent zone.
Technical Paper

Central Control of an Automated Riveting Machine and Robot Part Position with a Single CNC

2022-03-08
2022-01-0014
There exists a demand in the aerospace industry for highly configurable and flexible automated riveting cells to manufacture small to medium sized panels of complex geometries. To meet this demand Electroimpact has developed a manufacturing system consisting of a stationary Electro-squeeze C-frame riveter, coupled with a robot part positioner to present the component to the process head tool point. The C-frame can install a wide range of aerospace rivets and perform specialist functions including backside countersinking operations, giving potential for double flush fastening. The geometric limitations and high implementation costs of large cartesian based positioning barges or fixed jig tooling and moving gantry riveters are avoided when exchanged for a robot part positioner.
Technical Paper

Robotic Drilling and Countersinking on Highly Curved Surfaces

2015-09-15
2015-01-2517
Electroimpact has developed a novel method for accurately drilling and countersinking holes on highly convex parts using an articulated arm robotic drilling system. Highly curved parts, such as the leading edge of an aircraft wing, present numerous challenges when attempting to drill normal to the part surface and produce tight tolerance countersinks. Electroipmact's Accurate Robot technology allows extremely accurate positioning of the tool point and the spindle vector orientation. However, due to the high local curvature of the part, even a small positional deviation of the tool point can result in a significantly different normal vector than expected from an NC program. An off-normal hole will result in an out of tolerance countersink and a non-flush fastener.
Technical Paper

Robotic Installation of OSI-Bolts

2015-09-15
2015-01-2512
Electroimpact has developed an automated solution for installing OSI-Bolts on the HStab for Boeing's 787-9 aircraft. This solution utilizes Electroimpact's existing accurate robotic system together with new hardware designed specifically for OSI-Bolts. In addition to automated drilling and fastener installation, this system performs numerous quality checks to insure the installed fastener meets engineering requirements. Before installing the fastener, the system measures actual stack thickness and the length of the fastener to ensure that the proper grip is installed. Torque and angle feedback are recorded during installation which can be used determine if the fastener was installed correctly. The system will also automatically shave the small protuberance on the fastener head left by the broken off fastener stem, which is inherent to the OSI-Bolt. Figure 1 Cell Overview
Technical Paper

Fully Automated Robotic Tool Change

2015-09-15
2015-01-2508
An improved aircraft assembly line incorporates fully automated robotic tool change. Ten machine tools, each with two onboard 6-axis robots, drill and fasten airplane structural components. The robots change 100% of the process tooling (drill bits, bolt anvils, hole probes, and nosepieces) to allow seamless transition across the entire range of hole and fastener sizes (3/16″-7/16″). To support required rate, total tool change time (including automatic calibration) is less than 80 seconds. This paper describes the robots and their end effector hardware, reliability testing, and simulations for both mechanical clearance and cycle time estimation.
Technical Paper

High Accuracy Assembly of Large Aircraft Components Using Coordinated Arm Robots

2016-09-27
2016-01-2133
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
Technical Paper

Flexible All Electric Riveter

2019-03-19
2019-01-1333
A new style of all electric riveting machine has been developed with saddle hoppers that does not require a track between the hoppers and the fingers. This enables feeding square rivets without difficulty. The upper ram has a bent knee which allows the rivet fingers to be brought up to the hopper and rotated 30 degrees rather than the rivet sliding down a track, which minimizes jamming that occurs with some fasteners in the track, and increases reliability. A mixture of fasteners can be loaded side by side in the hoppers, increasing flexibility. The rivet feeding is accomplished by bringing the rivet fingers to the hopper. The machine uses a power drawbar to change out different rivet fingers. A small industrial robot is incorporated into the machine to complete different sized coupons and also complete small assemblies. In larger machines larger robots or CNC positioners can be used to scale up the use of the machine.
Technical Paper

Next Generation Mobile Robotic Drilling and Fastening Systems

2014-09-16
2014-01-2259
Electroimpact has developed a second generation of mobile robots with several improvements over the first generation. The frame has been revised from a welded steel tube to a welded steel plate structure, making the dynamic response of the structure stiffer and reducing load deflections while maintaining the same weight. The deflections of the frame have been optimized to simplify position compensation. The caster mechanism is very compact, offers greater mounting flexibility, and improved maneuverability. The mechanism uses a pneumatic airbag for both lifting and suspension. The robot sled has been improved to offer greater rigidity for the same weight, and dual secondary feedback scales on the vertical axis further improve the rigidity of the overall system. Maintenance access has been improved by rerouting the cable and hose trays, and lowering the electrical cabinet.
Journal Article

Collaborative Robotic Fastening Using Stereo Machine Vision

2019-03-19
2019-01-1374
With typically over 2.3 million parts, attached with over 3 million fasteners, it may be surprising to learn that approximately two out of every three fasteners on a twin aisle aircraft are fastened by hand. In addition the fasteners are often installed in locations designed for strength and not necessarily ergonomics. These facts lead to vast opportunities to automate this tedious and repetitive task. The solution outlined in this paper utilizes the latest machine vision and robotics techniques to solve these unique challenges. Stereo machine vision techniques find the fastener on the interior of an aerospace structure and calculate the 6DOF (Degrees of Freedom) location in less than 500ms. Once the fastener is located, sealed, and inspected for bead width and gaps, a nut or collar is then installed. Force feedback capabilities of a collaborative robot are used to prevent part damage and ensure the nut or collar are properly located on the fastener.
X