Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

How Hythane with 25% Hydrogen can Affect the Combustion in a 6-Cylinder Natural-gas Engine

2010-05-05
2010-01-1466
Using alternative fuels like Natural Gas (NG) has shown good potentials on heavy duty engines. Heavy duty NG engines can be operated either lean or stoichiometric diluted with EGR. Extending Dilution limit has been identified as a beneficial strategy for increasing efficiency and decreasing emissions. However dilution limit is limited in these types of engines because of the lower burnings rate of NG. One way to extend the dilution limit of a NG engine is to run the engine on Hythane (natural gas + some percentage hydrogen). Previously effects of Hythane with 10% hydrogen by volume in a stoichiometric heavy duty NG engine were studied and no significant changes in terms of efficiency and emissions were observed. This paper presents results from measurements made on a heavy duty 6-cylinder NG engine. The engine is operated with NG and Hythane with 25% hydrogen by volume and the effects of these fuels on the engine performance are studied.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

A Kinetic Modelling Study of Alcohols Operating Regimes in a HCCI Engine

2017-09-04
2017-24-0077
Pursuing a sustainable energy scenario for transportation requires the blending of renewable oxygenated fuels such as alcohols into commercial hydrocarbon fuels. From a chemical kinetic perspective, this requires the accurate description of both hydrocarbon reference fuels (n-heptane, iso-octane, toluene, etc.) and oxygenated fuels chemistry. A recent systematic investigation of linear C2-C5 alcohols ignition in a rapid compression machine at p = 10-30 bar and T = 650- 900 K has extended the scarcity of fundamental data at such conditions, allowing for a revision of the low temperature chemistry for alcohol fuels in the POLIMI mechanism. Heavier alcohols such as n-butanol and n-pentanol present ignition characteristic of interest for application in HCCI engines, due to the presence of the hydroxyl moiety reducing their low temperature reactivity compared to the parent linear alkanes (i.e. higher octane number).
Technical Paper

Model Predictive Control of a Combined EGR/SCR HD Diesel Engine

2010-04-12
2010-01-1175
Achieving upcoming HD emissions legislation, Euro VI/EPA 10, is a challenge for all engine manufacturers. A likely solution to meet the NOx limit is to use a combination of EGR and SCR. Combining these two technologies poses new challenges and possibilities when it comes to optimization and calibration. Using a complete system approach, i.e., considering the engine and the aftertreatment system as a single unit, is important in order to achieve good performance. Optimizing the complete system is a tedious task; first there are a large number of variables which affect both emissions and fuel consumption (injection timing, EGR rate, urea dosing, injection pressure, pilot/post injections, for example). Secondly, the chemical reactions in the SCR catalyst are substantially slower than the dynamics of the diesel engine and the rest of the system, making the optimization problem time dependent.
Technical Paper

Influence of Inlet Pressure, EGR, Combustion Phasing, Speed and Pilot Ratio on High Load Gasoline Partially Premixed Combustion

2010-05-05
2010-01-1471
The current research focuses in understanding how inlet pressure, EGR, combustion phasing, engine speed and pilot main ratio are affecting the main parameters of the combustion (e.g. efficiency, NOx, soot, maximum pressure rise rate) in the novel concept of injecting high octane number fuels in partially premixed combustion. The influence of the above mentioned parameters was studied by performing detailed sweeps at 32 bar fuel MEP (c.a. 16-18 bar gross IMEP); three different kinds of gasoline were tested (RON: 99, 89 and 69). The experiments were ran in a single cylinder heavy duty engine; Scania D12. At the end of these sweeps the optimized settings were computed in order to understand how to achieve high efficiency, low emissions and acceptable maximum pressure rise rate.
Technical Paper

Modeling n-dodecane Spray Combustion with a Representative Interactive Linear Eddy Model

2017-03-28
2017-01-0571
Many new combustion concepts are currently being investigated to further improve engines in terms of both efficiency and emissions. Examples include homogeneous charge compression ignition (HCCI), lean stratified premixed combustion, stratified charge compression ignition (SCCI), and high levels of exhaust gas recirculation (EGR) in diesel engines, known as low temperature combustion (LTC). All of these combustion concepts have in common that the temperatures are lower than in traditional spark ignition or diesel engines. To further improve and develop combustion concepts for clean and highly efficient engines, it is necessary to develop new computational tools that can be used to describe and optimize processes in nonstandard conditions, such as low temperature combustion.
Technical Paper

Extending the Operating Region of Multi-Cylinder Partially Premixed Combustion using High Octane Number Fuel

2011-04-12
2011-01-1394
Partially Premixed Combustion (PPC) is a combustion concept by which it is possible to get low smoke and NOx emissions simultaneously. PPC requires high EGR levels to extend the ignition delay so that air and fuel mix prior to combustion to a larger extent than with conventional diesel combustion. This paper investigates the operating region of single injection PPC for three different fuels; Diesel, low octane gasoline with similar characteristics as diesel and higher octane standard gasoline. Limits in emissions are defined and the highest load that fulfills these requirements is determined. The investigation shows the benefits of using high octane number fuel for Multi-Cylinder PPC. With high octane fuel the ignition delay is made longer and the operating region of single injection PPC can be extended significantly. Experiments are carried out on a multi-cylinder heavy-duty engine at low, medium and high speed.
Technical Paper

Investigation and Comparison of Multi Cylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels

2011-08-30
2011-01-1811
Partially Premixed Combustion is a concept able to combine low smoke and NOx emissions with high combustion controllability and efficiency. It is of interest to be able to utilize PPC in a large operating region in order to meet the Euro VI emission legislation without relying on NOx aftertreatment. This paper investigates the differences in PPC characteristics for three fuels; Diesel Swedish Mk 1, Low Octane Gasoline (70 Octane) and US Standard Gasoline (87 Octane). Engine operating conditions, combustion characteristics, emissions and efficiency are in focus. The experiments were carried out at a range of operating points on a Volvo MD13 which is a six-cylinder heavy-duty engine. At each operating point three combinations of EGR level and λ-value were evaluated. 1. High EGR/High λ, 2. High EGR/Reduced λ, and 3. Reduced EGR/High λ.
Technical Paper

Flow Field Measurements inside a Piston Bowl of a Heavy-Duty Diesel Engine

2011-08-30
2011-01-1835
Combination of flow field measurements, shown in this paper, give new information on the effect of engine run parameters to formation of different flow fields inside piston bowl. The measurements were carried out with particle image velocimetry (PIV) technique in optical engine. Good set of results was achieved even though the feasibility of this technique in diesel engines is sometimes questioned. Main challenge in diesel engines is background radiation from soot particles which is strong enough to conceal the PIV signal. Window staining in diesel engine is also a problem, since very high particle image quality is needed for velocity analysis. All measurements were made in an optical heavy-duty diesel engine. Optical design of engine was Bowditch type [1]. The engine was charged and equipped with exhaust gas recirculation (EGR). The exhaust gas level was monitored by oxygen concentration and the level was matched to former soot concentration measurements.
Technical Paper

Integrated Breathing Model and Multi-Variable Control Approach for Air Management in Advanced Gasoline Engine

2006-04-03
2006-01-0658
The evolution of automotive engines calls for the design of electronic control systems optimizing the engine performance in terms of reduced fuel consumption and pollutant emissions. However, the opportunities provided by modern engines have not yet completely exploited, since the adopted control strategies are still largely developed in a very heuristic way and rely on a number of SISO (Single Input Single Output) designs. On the contrary, the strong coupling between the available actuators calls for a MIMO (Multi Input Multi Output) control design approach. To this regard, the availability of reliable dynamic engine models plays an important role in the design of engine control and diagnostic systems, allowing for a significant reduction of the development times and costs. This paper presents a control-oriented model of the air-path system of today's gasoline internal combustion engines.
Technical Paper

Analysis of EGR/Air Mixing by 1-D Simulation, 3-D Simulation and Experiments

2014-10-13
2014-01-2647
The use of EGR for NOX reduction is today a standard technology for diesel engines. The mixing of air and EGR is an important issue, especially for high-pressure EGR-systems. An uneven distribution of EGR between the cylinders can lead to higher overall engine emissions when some cylinders produce more soot, others more NOX than they would with a perfectly even distribution. It is therefore important to understand the processes that control the mixing between air and EGR. The mixing is influenced by both the geometry of the mixing area and the pulsating nature of the flow. The aim of this work is to point out the high importance of the pulses present in the EGR-flow. By simulation in 1-D and 3-D as well as by a fast measurement method, it is shown that the EGR is transported in the air flow in packets. This implies that the timing between intake valve opening and the positioning of the EGR packets has a high influence of the distribution of EGR between the cylinders.
Technical Paper

Dynamic Injection Adaptation by Input Shaping for Low NOx Emissions during Transients

2014-04-01
2014-01-1161
Especially in view of more and more stringent emission legislation in passenger cars it is required to reduce the amount of pollutants. In the case of Diesel engines mainly NOx and PM are emitted during engine operation. The main influence factors for these pollutants are the in-cylinder oxygen concentration and the injected fuel amount. Typically the engine control task can be divided into two separate main parts, the fuel and the air system. Commonly air system control, consisting of a turbocharger and exhaust gas recirculation control, is used to provide the required amount of oxygen and address the emission targets, whereas the fuel is used to provide the desired torque. Especially in transient maneuvers the different time scales of both systems can lead to emission peaks which are not desired. Against this background in this work instead of the common way to address the air system, the fuel system is considered to reduce emission peaks during transients.
Technical Paper

CFD Modeling of a DME CI Engine in Late-PCCI Operating Conditions

2023-04-11
2023-01-0203
Predictive combustion models are useful tools towards the development of clean and efficient engines operating with alternative fuels. This work intends to validate two different combustion models on compression-ignition engines fueled with Dimethyl Ether. Both approaches give a detailed characterization of the combustion kinetics, but they substantially differ in how the interaction between fluid-dynamics and chemistry is treated. The first one is single-flamelet Representative Interactive Flamelet, which considers turbulence-kinetic interaction but cannot correctly describe the stabilization of the flame. The second, named Tabulated Well Mixed, correctly accounts for local flow and mixture conditions but does not consider interaction between turbulence and chemistry. An experimental campaign was carried out on a heavy-duty truck engine running on DME at a constant load considering trade-off of EGR and SOI.
X