Refine Your Search

Topic

Author

Search Results

Journal Article

Engine Friction Accounting Guide and Development Tool for Passenger Car Diesel Engines

2013-10-14
2013-01-2651
The field of automotive engineering has devoted much research to reduce fuel consumption to attain sustainable energy usage. Friction reductions in powertrain components can improve engine fuel economy. Quantitative accounting of friction is complex because it is affected by many physical aspects such as oil viscosity, temperature, surface roughness and component rotation speed. The purpose of this paper is two-fold: first, to develop a useful tool for evaluating the friction in engine and accessories based on test data; second, to exercise the tool to evaluate the fuel economy gain in a drive cycle for several friction reduction technologies.
Journal Article

Diesel Combustion Noise Reduction by Controlling Piston Vibration

2015-04-14
2015-01-1667
It has been required recently that diesel engines for passenger cars meet various requirements, such as low noise, low fuel consumption, low emissions and high power. The key to improve the noise is to reduce a combustion noise known as “Diesel knock noise”. Conventional approaches to reduce the diesel knock are decreasing combustion excitation force due to pilot/pre fuel injection, adding ribs to engine blocks or improving noise transfer characteristics by using insulation covers. However, these approaches have negative effects, such as deterioration in fuel economy and increase in cost/weight. Therefore, modification of engine structures is required to reduce it. We analyzed noise transfer paths from a piston, a connecting rod, a crank shaft to an engine block and vibration behavior during engine operation experimentally, and identified that piston resonance was a noise source.
Journal Article

Conceptual Modeling of Complex Systems via Object Process Methodology

2009-04-20
2009-01-0524
Knowledge mapping is a first and mandatory step in creation of system architecture. This paper considers the conceptual modeling of automotive systems, and discusses the creation of a knowledge-based model with respect to the Object Process Methodology an approach used in designing intelligent systems by depicting them using object models and process models. With this knowledge, systems engineer should consider what a product is comprised of (its structure), how it operates (its dynamics), and how it interacts with the environment. As systems have become more complex, a prevalent problem in systems development has been the number of accruing errors. A clearly defined and consistent mapping of knowledge regarding structure, operation and interaction is necessary to construct an effective and useful system. An interactive, iterative and consistent method is needed to cope with this complex and circular problem.
Journal Article

EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation

2012-04-16
2012-01-0707
The effects of cooled exhaust gas recirculation (EGR) on a boosted direct-injection (DI) spark ignition (SI) engine operating at stoichiometric equivalence ratio, gross indicated mean effective pressure of 14-18 bar, and speed of 1500-2500 rpm, are studied under constant fuel condition at each operating point. In the presence of EGR, burn durations are longer and combustion is more retard. At the same combustion phasing, the indicated specific fuel consumption improves because of a decrease in heat loss and an increase in the specific heat ratio. The knock limited spark advance increases substantially with EGR. This increase is due partly to a slower combustion which is equivalent to a spark retard, as manifested by a retarded value of the 50% burn point (CA50), and due partly to a slower ignition chemistry of the diluted charge, as manifested by the knock limited spark advance to beyond the value offered by the retarded CA50.
Journal Article

A Study on Design Factors of Gas Pedal Operation

2012-04-16
2012-01-0073
Lateral distance from the center of a driver's seating position to the gas and brake pedals is one of the main design factors that relates to the ease of stepping on the pedals from one and the other. It is important to keep a certain distance between the pedals to prevent erroneous operations or to reduce the driver's anxiety. In this paper, we explain that the distance between the pedals is affected by the driver's seating height. In other words, if the driver sits lower, the accuracy of stepping on the pedals from the gas pedal to the brake pedal will increase compared to the higher seating position. In addition, we found out that providing auxiliary parts for the leg support enhances the accuracy of the pedal operations.
Technical Paper

The Driving Simulator with Large Amplitude Motion System

1991-02-01
910113
An Advanced driving simulator has been developed at Mazda Yokohama Research Center. The primary use of this simulator is to research future driver-vehicle systems. In an emergency situation, a driver must respond rapidly to perceived motion and visual stimulus to avoid an accident. In such cases, because the time delay associated with the perception of motion cues is shorter than visual and auditory cues, the driver will strongly rely upon perceived motion to control the vehicle. Hence, a driving simulator to be used in the research of driver-vehicle interactions in emergency driving must include a high performance motion system capable of large amplitude lateral motion. The Mazda simulator produces motion cues in four degrees of freedom, provides visual and auditory cues, and generates control feel on the steering wheel. This paper describes the merit of the large amplitude motion system and the features of this newly developed driving simulator.
Journal Article

Potential of Negative Valve Overlap for Part-Load Efficiency Improvement in Gasoline Engines

2018-04-03
2018-01-0377
This article reports on the potential of negative valve overlap (NVO) for improving the net indicated thermal efficiency (η NIMEP) of gasoline engines during part load. Three fixed fuel flow rates, resulting in indicated mean effective pressures of up to 6 bar, were investigated. At low load, NVO significantly reduces the pumping loses during the gas exchange loop, achieving up to 7% improvement in indicated efficiency compared to the baseline. Similar efficiency improvements are achieved by positive valve overlap (PVO), with the disadvantage of worse combustion stability from a higher residual gas fraction (xr). As the load increases, achieving the wide-open throttle limit, the benefits of NVO for reducing the pumping losses diminish, while the blowdown losses from early exhaust valve opening (EVO) increase.
Technical Paper

Stratified Diesel Fuel-Water-Diesel Fuel Injection Combined with EGR-The Most Efficient In-Cylinder NOx and PM Reduction Technology

1997-10-01
972962
For meeting 21st-century exhaust emission standards for HD diesel engines, new methods are necessary for reducing NOx and PM emissions without increasing fuel consumption. The stratified diesel fuel-water-diesel fuel (DWD) injection in combination with exhaust gas recirculation (EGR) is as a means for NOx and PM reduction without any negative effect on fuel economy. The investigation was performed on a charged HD single-cylinder direct-injection diesel engine with a modern low-swirl combustion system, 4-valve technology and high pressure injection. The application of DWD injection combined with EGR resulted in a 60 percent lower NOx emission at full load and a 75 percent reduced NOx emission at part load when compared with present day (EURO II) technology. This was achieved without any fuel economy penalty, but with an additional PM emission reduction.
Technical Paper

The Compatibility of Tractor/Trailer-Combinations During Braking Maneuvers

1997-11-17
973282
The active safety of tractor / trailer-combinations plays an important role in regard to traffic safety in general. For improving the active safety of tractor / trailer-combinations, it is necessary to investigate the interactions between the towing vehicle and the trailer during braking maneuvers. This paper describes the ECE-regulations for the braking force distributions of tractor/full trailer- and tractor / semitrailer-combinations. The influence of different layouts of the braking systems within these regulations on the coupling forces between tractor and trailer and the driving performance of the units during braking is investigated. The dynamical behaviour of a tractor/full-trailer-combination and a tractor / semitrailer-combination are both discussed with the aid of simulations of the ISO-standard testing procedures “Braking in a turn” and “Braking straight ahead”.
Technical Paper

Innovative Methodology for Brake Torque and Residual Brake Torque Measurement

1998-02-23
980591
During the design, evaluation and optimization process of automotive brake systems brake torque measurements are often crucial. Known brake torque sensors lead to differences in terms of mass, inertia, stiffness and brake cooling compared to a vehicle without measurement equipment. In this contribution a new brake torque sensor is described which proved to be superior to known systems. Either the hub itself is turned into the sensing element or is replaced by a sensing element. Thus mass, inertia, stiffness and cooling conditions are nearly unchanged. A modification of this sensor allows measurement of residual brake torques in a low range (20....50 Nm) with high sensivity and features at the same time a high range (up to 2.000 Nm) with lower sensivity. The application of the sensor in a study to lower energy loss caused by residual brake friction in a passenger car is described.
Technical Paper

The Influence of the Valve Stroke Design in Variable Valve Timing Systems on Load Cycle, Mixture Formation and the Combustion Process in Conjunction with Throttle-Free Load Governing

1998-02-23
981030
In conjunction with throttle-free load control on a 4-valve, single-cylinder spark-ignition engine, the influencing variables of charge cycle, mixture formation and combustion process are presented both as computer calculations and on the basis of test results. The influences of the position of the maximum of the inlet valve stroke, the position of the inlet close, the shape of the valve stroke and the load motion in relation to the maximum power and minimum fuel consumption are investigated in full load by computer calculations and in partial load by engine tests.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Axiomatic Design of Automobile Suspension and Steering Systems: Proposal for a Novel Six-Bar Suspension

2004-03-08
2004-01-0811
The existing vehicle designs exhibit a high level of coupling. For instance the coupling in the suspension and steering systems manifests itself through the change in wheel alignment parameters (WAP) due to suspension travel. This change in the WAP causes directional instability and tire-wear. The approach of the industry to solve this problem has been twofold. The first approach has been optimization of suspension link lengths to reduce the change in WAP to zero. Since this is not possible with the existing architecture, the solution used is the optimization of the spring stiffness K to get a compromise solution for comfort (which requires significant suspension travel and hence a soft spring) and directional stability (which demands least possible change in wheel alignment parameters and hence a stiff spring).
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
Technical Paper

Mazda 4-Rotor Rotary Engine for the Le Mans 24-Hour Endurance Race

1992-02-01
920309
The “R26B” 4-rotor rotary engine is a powerplant that brought a Mazda racing car to victory in the 1991 Le Mans 24-hour endurance race. This engine was developed to achieve high levels of power output, fuel efficiency, and reliability, as required of endurance racing engines. This paper describes the basic structure of the engine, including a 3-piece eccentric shaft that represents a major technological achievement incorporated in the engine, as well as other technological innovations employed for the enhancement of the engine's power output and reliability, and for reducing its fuel consumption. These innovations include a telescopic intake manifold system, peripheral port injection, 3-plug ignition system, 2-piece ceramic apex seal, and a cermet coating on the rubbed surfaces of the housings.
Technical Paper

Particulate Filter Soot Load Measurements using Radio Frequency Sensors and Potential for Improved Filter Management

2016-04-05
2016-01-0943
Efficient aftertreatment management requires accurate sensing of both particulate filter soot and ash levels for optimized feedback control. Currently a combination of pressure drop measurements and predictive models are used to indirectly estimate the loading state of the filter. Accurate determination of filter soot loading levels is challenging under certain operating conditions, particularly following partial regeneration events and at low flow rate (idle) conditions. This work applied radio frequency (RF)-based sensors to provide a direct measure of the particulate filter soot levels in situ. Direct measurements of the filter loading state enable advanced feedback controls to optimize the combined engine and aftertreatment system for improved DPF management. This study instrumented several cordierite and aluminum titanate diesel particulate filters with RF sensors. The systems were tested on a range of light- and heavy-duty applications, which included on- and off-road engines.
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

New Methodology of Life Cycle Assessment for Clean Energy Vehicle and New Car Model

2011-04-12
2011-01-0851
Mazda announced that all customers who purchase Mazda cars are provided with the joy of driving and excellent environmental and safety performance under slogan of "Sustainable Zoom-Zoom" long-term vision for technology development. The purpose of this study is to develop a new approach of Life Cycle Assessment (abbreviated to LCA) to be applied to clean energy vehicles and new car models. The improvement of both environmental performance, e.g., fuel consumption, exhaust emissions, vehicle weight reduction, and LCA that is a useful methodology to assess the environmental load of automobiles for their lifecycles has become more important. LCA by inventory analysis, for RX-8 Hydrogen RE as a rotary engine vehicle used hydrogen as clean energy, was carried out and disclosed the world for the first time. LCA for new Mazda 5 was carried out as the portfolio of all models, previously only the specific model equipped with fuel efficiency device based on ISO14040.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Effect of Composition, Particle Size, and Heat Treatment on the Mechanical Properties of Al-4.5 wt.% Cu Based Alumina Particulate Reinforced Composites

1998-02-23
980700
The quest for higher efficiency and performance of automotive vehicles requires application of materials with high strength, stiffness and lower weight in their construction. Particulate-reinforced aluminum-matrix composites are cost-competitive materials, which can meet these requirements. MMCC, Inc. has been optimizing particulate-reinforced alloy systems and developing the Advanced Pressure Infiltration Casting (APIC™) process for the manufacture of components from these materials. This paper discusses the results of a recent study in which composites reinforced with 55 vol.% alumina were cast using two sizes of alumina particulate and eight different matrix alloys based on Al-4.5 wt.% Cu with varying amounts of silicon and magnesium. Optimum heat treatments for each alloy were determined utilizing microhardness studies. The tensile strength and fracture toughness were evaluated as a function of alloy chemistry, particulate size, and heat treatment.
X