Refine Your Search

Topic

Author

Search Results

Journal Article

Predicting Failure during Sheared Edge Stretching Using a Damage-Based Model for the Shear-Affected Zone

2013-04-08
2013-01-1166
Hole expansion of a dual phase steel, DP600, was numerically investigated using a damage-based constitutive law to predict failure. The parameters governing void nucleation and coalescence were identified from an extensive review of the x-ray micro-tomography data available in the literature to ensure physically-sound predictions of damage evolution. A recently proposed technique to experimentally quantify work-hardening and damage in the shear-affected zone is incorporated into the damage model to enable fracture predictions of holes with sheared edges. Finite-element simulations of a hole expansion test with a conical punch were performed for both a punched and milled hole edge condition and the predicted hole expansion ratios are in very good agreement with the experiment values reported by several researchers.
Journal Article

Derivation of Effective Strain-Life Data, Crack Closure Parameters and Effective Crack Growth Data from Smooth Specimen Fatigue Tests

2013-04-08
2013-01-1779
Small crack growth from notches under variable amplitude loading requires that crack opening stress be followed on a cycle by cycle basis and taken into account in making fatigue life predictions. The use of constant amplitude fatigue life data that ignores changes in crack opening stress due to high stress overloads in variable amplitude fatigue leads to non-conservative fatigue life predictions. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non-conservative when constant amplitude crack growth data are used. These non-conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history.
Journal Article

Physics-Based Models, Sensitivity Analysis, and Optimization of Automotive Batteries

2013-10-14
2013-01-2560
The analysis of nickel metal hydride (Ni-MH) battery performance is very important for automotive researchers and manufacturers. The performance of a battery can be described as a direct consequence of various chemical and physical phenomena taking place inside the container. In this paper, a physics-based model of a Ni-MH battery will be presented. To analyze its performance, the efficiency of the battery is chosen as the performance measure, which is defined as the ratio of the energy output from the battery and the energy input to the battery while charging. Parametric sensitivity analysis will be used to generate sensitivity information for the state variables of the model. The generated information will be used to showcase how sensitivity information can be used to identify unique model behavior and how it can be used to optimize the capacity of the battery. The results will be validated using a finite difference formulation.
Journal Article

Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach

2015-04-14
2015-01-1184
The performance, life cycle cost, and safety of electric and hybrid electric vehicles (EVs and HEVs) depend strongly on their energy storage system. Advanced batteries such as lithium-ion (Li-ion) polymer batteries are quite viable options for storing energy in EVs and HEVs. In addition, thermal management is essential for achieving the desired performance and life cycle from a particular battery. Therefore, to design a thermal management system, a designer must study the thermal characteristics of batteries. The thermal characteristics that are needed include the surface temperature distribution, heat flux, and the heat generation from batteries under various charge/discharge profiles. Therefore, in the first part of the research, surface temperature distribution from a lithium-ion pouch cell (20Ah capacity) is studied under different discharge rates of 1C, 2C, 3C, and 4C.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Journal Article

Impact Testing of a Hot-Formed B-Pillar with Tailored Properties - Experiments and Simulation

2013-04-08
2013-01-0608
This paper presents the numerical validation of the impact response of a hot formed B-pillar component with tailored properties. A laboratory-scale B-pillar tool is considered with integral heating and cooling sections in an effort to locally control the cooling rate of an austenitized blank, thereby producing a part with tailored microstructures to potentially improve the impact response of these components. An instrumented falling-weight drop tower was used to impact the lab-scale B-pillars in a modified 3-point bend configuration to assess the difference between a component in the fully hardened (martensitic) state and a component with a tailored region (consisting of bainite and ferrite). Numerical models were developed using LS-DYNA to simulate the forming and thermal history of the part to estimate the final thickness and strain distributions as well as the predicted microstructures.
Technical Paper

Effects of Bead Surface Preparation on Friction in the Drawbead Test

1991-02-01
910511
The effects of bead surface roughness on friction, die pickup, and sheet surface damage in the drawbead test were investigated. Beads of HRC 58 hardness were prepared from centerless-ground rod by circumferential honing to 0.05 μm roughness, followed by finishing with 100, 400, or 600 grit SiC paper in the axial direction. Paraffinic base oils with viscosities of 4.5, 30, and 285 mm2/s were used neat and in conjunction with stearic acid. The effects of bead roughness depended on the nature of metal transfer, especially its distribution and firmness of attachment. The presence of a boundary additive increased, decreased, or had no effect on friction depending on the particular coating and bead finish.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
Technical Paper

Monitoring the Effect of RSW Pulsing on AHSS using FEA (SORPAS) Software

2007-04-16
2007-01-1370
In this study, a finite element software application (SORPAS®) is used to simulate the effect of pulsing on the expected weld thermal cycle during resistance spot welding (RSW). The predicted local cooling rates are used in combination with experimental observation to study the effect pulsing has on the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds. Experimental observation of the weld microstructure was obtained by metallographic procedures and mechanical properties were determined by tensile shear testing. Microstructural changes in the weld metal and heat affect zone (HAZ) were characterized with respect to process parameters.
Technical Paper

Humidity Sensing Based on Ordered Porous Silicon for the Application on Fuel Cell

2008-04-14
2008-01-0687
Porous silicon as gas/chemical sensing material has been widely investigated in recent years. In this paper, the humidity sensing property of n-type porous silicon with ordered structure is studied for the first time. The ordered porous silicon used in this experiment has uniform pore size, pore shape and distribution. Both the membrane and closed bottom samples were studied. The resistance change of the porous silicon was measured. A 22-28% decrease of resistance was observed when relative humidity was changed from 1% to 100%. Both the response time and the recovery time were within 10 minutes, and 90% of the response can be reached in 6 minutes for the PS membrane sample. The possible sensing mechanism and future work are also discussed in this paper.
Technical Paper

Application of Damage Models in Bending and Hydroforming of Aluminum Alloy Tube

2004-03-08
2004-01-0835
This paper examines the application of damage models in tube bending and subsequent hydroforming of AlMg3.5Mn aluminum alloy tubes. An in-house Gurson-based damage model, incorporated within LS-DYNA, has been used for the simulations. The applied damage model contains several void nucleation and growth parameters that must be determined for each material. A simpler straight tube hydroforming process was considered first to check the damage parameters and predicted ductility. Then the model was applied to a sequence of bending and hydroforming. The damage history from pre-bending was mapped to the hydroforming stage, to allow prediction of the overall ductility. The applied forming parameters in the simulation were based on data extracted during the experimental tests. Finally, the numerical results were compared to the experimental data.
Technical Paper

Multi-Scale FE/Damage Percolation Modeling of Ductile Damage Evolution in Aluminum Sheet Forming

2004-03-08
2004-01-0742
A so-called damage percolation model is coupled with Gurson-based finite element (FE) approach in order to accommodate the high strain gradients and localized ductile damage. In doing so, void coalescence and final failure are suppressed in Gurson-based FE modeling while a measured second phase particle field is mapped onto the most damaged mesh area so that percolation modeling can be performed to capture ductile fracture in real sheet forming operations. It is revealed that void nucleation within particle clusters dominates ductile fracture in aluminum alloy sheet forming. Coalescence among several particle clusters triggered final failure of materials. A stretch flange forming is simulated with the coupled modeling.
Technical Paper

Weld Failure in Formability Testing of Aluminum Tailor Welded Blanks

2001-03-05
2001-01-0090
The present work investigates weld failure modes during formability tests of multi-gauge aluminum Tailor Welded Blanks (TWBs). The limiting dome height test is used to evaluate formability of TWBs. Three gauge combinations utilizing aluminum alloy 5754 sheets are considered (2 to 1 mm, 1.6 to 1 mm and 2 to 1.6 mm). Three weld orientations have been considered: transverse, longitudinal and 45°. Interaction of several factors determines the type of failure that occurs in a TWB specimen. These factors are weld orientation, morphology and distribution of weld defects, and the magnitude of constraint imposed by the thicker sheet to the thin sheet. The last factor depends on the difference in thickness of the sheet pair and is usually expressed in terms of gauge ratio. In general TWBs show two different types of fracture: weld failure and failure of the thin aluminum sheet. Only the former will be discussed in this paper.
Technical Paper

Effect of Endfeed on the Strains and Thickness During Bending and on the Subsequent Hydroformability of Steel Tubes

2003-10-27
2003-01-2837
This research examines the effect of endfeed on the thickness and strains during bending of steel tubes. The tubes were bent using an instrumented rotary draw tube bender and subsequently hydroformed into a diamond-profile outside corner fill die. DQAK tubes with an OD of 76.2 mm and a thickness of 1.55 mm were investigated. Endfeed during bending was found to have a significant effect on the thickness and strains within the tube after bending, and numerical models that were generated showed good agreement with the experimental data. It is shown how slight changes in thickness can cause localized failure during hydroforming, and how excessive die clearances can cause large strains in undesired areas.
Technical Paper

Static and Dynamic Denting of Paint Baked AA6111 Panels: Comparison of Finite Element Predictions and Experiments

2001-10-16
2001-01-3047
This work presents comparisons of finite element model predictions of static and dynamic denting with experimental results. Panels were stamped from 0.81, 0.93 and 1.00mm AA6111-T4 and then paint-baked to produce representative automotive outer body panels. Each type of panel was statically and dynamically dented at three locations using a 25.4mm steel ball. Static denting was accomplished with incremental loading of 22.24N loads up to a maximum of 244.48N. Dynamic denting was accomplished by dropping the steel ball from heights ranging from 200mm to 1200mm. Multi-stage finite element analysis was performed using LS-DYNA1 and ABAQUS2 to predict the entire process of forming, spring-back, denting and final spring-back of the dented panels. The predicted results show good correlation with the experiments, but also highlight the sensitivity of the predictions to formulation of the finite element problem.
Technical Paper

Real-Time Robust Lane Marking Detection and Tracking for Degraded Lane Markings

2017-03-28
2017-01-0043
Robust lane marking detection remains a challenge, particularly in temperate climates where markings degrade rapidly due to winter conditions and snow removal efforts. In previous work, dynamic Bayesian networks with heuristic features were used with the feature distributions trained using semi-supervised expectation maximization, which greatly reduced sensitivity to initialization. This work has been extended in three important respects. First, the tracking formulation used in previous work has been corrected to prevent false positives in situations where only poor RANSAC hypotheses were generated. Second, the null hypothesis is reformulated to guarantee that detected hypotheses satisfy a minimum likelihood. Third, the computational requirements have been greatly reduced by computing an upper bound on the marginal likelihood of all part hypotheses upon generation and rejecting parts with an upper bound less likely than the null hypothesis.
Technical Paper

Recognizing Driver Braking Intention with Vehicle Data Using Unsupervised Learning Methods

2017-03-28
2017-01-0433
Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
Technical Paper

Extended Range Electric Vehicle Powertrain Simulation, and Comparison with Consideration of Fuel Cell and Metal-Air Battery

2017-03-28
2017-01-1258
The automobile industry has been undergoing a transition from fossil fuels to a low emission platform due to stricter environmental policies and energy security considerations. Electric vehicles, powered by lithium-ion batteries, have started to attain a noticeable market share recently due to their stable performance and maturity as a technology. However, electric vehicles continue to suffer from two disadvantages that have limited widespread adoption: charging time and energy density. To mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range. This work seeks to compare various powertrains, including: combined power battery electric vehicles (BEV) (zinc-air and lithium-ion battery), zero emission fuel cell vehicles (FCV)), conventional gasoline powered vehicles (baseline internal combustion vehicle), and ICE engine extended range hybrid electric vehicle.
Technical Paper

Measurement of Temperature Gradient (dT/dy) and Temperature Response (dT/dt) of a Prismatic Lithium-Ion Pouch Cell with LiFePO4 Cathode Material

2017-03-28
2017-01-1207
Lithium-ion batteries, which are nowadays common in laptops, cell phones, toys, and other portable electronic devices, are also viewed as a most promising advanced technology for electric and hybrid electric vehicles (EVs and HEVs), but battery manufacturers and automakers must understand the performance of these batteries when they are scaled up to the large sizes needed for the propulsion of the vehicle. In addition, accurate thermo-physical property input is crucial to thermal modeling. Therefore, a designer must study the thermal characteristics of batteries for improvement in the design of a thermal management system and also for thermal modeling. This work presents a purely experimental thermal characterization in terms of measurement of the temperature gradient and temperature response of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration.
Technical Paper

Volumetric Tire Models for Longitudinal Vehicle Dynamics Simulations

2016-04-05
2016-01-1565
Dynamic modelling of the contact between the tires of automobiles and the road surface is crucial for accurate and effective vehicle dynamic simulation and the development of various driving controllers. Furthermore, an accurate prediction of the rolling resistance is needed for powertrain controllers and controllers designed to reduce fuel consumption and engine emissions. Existing models of tires include physics-based analytical models, finite element based models, black box models, and data driven empirical models. The main issue with these approaches is that none of these models offer the balance between accuracy of simulation and computational cost that is required for the model-based development cycle. To address this issue, we present a volumetric approach to model the forces/moments between the tire and the road for vehicle dynamic simulations.
X