Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Measures to Prevent Unauthorized Access to the In-Vehicle E/E System, Due to the Security Vulnerability of a Remote Diagnostic Tester

2017-03-28
2016-32-0018
Remote diagnostic systems support diagnostic communication by having the capability of sending diagnostic request services to a vehicle and receiving diagnostic response services from a vehicle. These diagnostic services are specified in diagnostic protocols, such as SAE J1979, SAE J1939 or ISO 14229 (UDS). For the purpose of diagnostic communication, the tester needs access to the electronic control units as communication partners. Physically, the diagnostic tester gets access to the entire vehicle´s E/E system, which consists of connectors, wiring, the in-vehicle network (e.g. CAN), the electronic control units, sensors, and actuators. Any connection of external test equipment and the E/E system of a vehicle poses a security vulnerability. The combination can be used for malicious intrusion and manipulation.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Journal Article

Engine Cooling Module Sizing Using Combined 1-Dimensional and CFD Modeling Tools

2009-04-20
2009-01-1177
Engine cooling module air flows depend on package components and vehicle front end geometry. For years, in the early stages of vehicle development, front end geometry air flows were determined from 3/8 scale models or retrofit of similar existing vehicles. As time to market has become much shorter, finite element modeling of air flows is the only tool available. This paper describes how finite element simulations of front end air flows can be run early in the development program independent of any specific engine cooling module configuration and then coupled with traditional one-dimensional component performance models to predict cooling module air flows. The CFD simulation thus replaces the previous scale model testing process. The CFD simulations are used to determine the two parameters that characterize the front end geometry flow resistance (recovery coefficient and internal loss coefficient).
Journal Article

Vehicle Chassis, Body, and Seat Belt Buckle Acceleration Responses in the Vehicle Crash Environment

2009-04-20
2009-01-1246
For over 30 years, field research and laboratory testing has consistently demonstrated that proper utilization of a seat belt dramatically reduces the risk of occupant death or serious injury in motor vehicle crashes. The injury prevention benefits of seat belts require that they remain fastened during collisions. Federal Motor Vehicle Safety Standards and SAE Recommended Practices set forth seat belt requirements to ensure proper buckle performance in accident conditions. Numerous analytical and laboratory studies have investigated buckle inertial release properties. Studies have repeatedly demonstrated that current buckle designs have inertial release thresholds well above those believed to occur in real-world crashes. Nevertheless, inertial release theories persist. Various conceptual amplification theories, coupled with high magnitude accelerations measured on vehicle frame components are used as support for these release theories.
Journal Article

Using LES for Predicting High Performance Car Airbox Flow

2009-04-20
2009-01-1151
Aerodynamic had played a primary role in high performance car since the late 1960s, when introduction of the first inverted wings appeared in some formulas. Race car aerodynamic optimisation is one of the most important reason behind the car performance. Moreover, for high performance car using naturally aspired engine, car aerodynamic has a strong influence also on engine performance by its influence on the engine airbox. To improve engine performance, a detailed fluid dynamic analysis of the car/airbox interaction is highly recommended. To design an airbox geometry, a wide range of aspects must be considered because its geometry influences both car chassis design and whole car aerodynamic efficiency. To study the unsteady fluid dynamic phenomena inside an airbox, numerical approach could be considered as the best way to reach a complete integration between chassis, car aerodynamic design, and airbox design.
Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
Journal Article

Size and Weight Reduction Technology for a Hybrid System

2009-04-20
2009-01-1339
A small hybrid system was developed for the 2009 model hybrid vehicle. The Intelligent Power Unit (IPU), which consists of a high-voltage battery and a Power Control Unit (PCU), occupies 19% less volume and is 28% lighter than the previous model(1). In order to reduce the size and weight of the IPU, the number of nickel-metal hydride battery modules was reduced, enabling the battery box to be made smaller and lighter. In order to provide the necessary output with fewer battery modules, the length of the battery electrodes was increased, thus raising the output from each battery module. The volume and weight of the PCU were reduced by integrating the inverter, DC-DC converter, and ECU into a single package. The size reduction of the IPU enabled the IPU to be installed at the bottom of the luggage compartment. As a result, the available space in the luggage compartment is the same as that of a conventional vehicle.
Journal Article

SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance

2009-04-20
2009-01-0901
A laboratory study was performed to optimize a zoned configuration of an iron (Fe) SCR catalyst and a copper (Cu) SCR catalyst in order to provide high NOx conversion at lean A/F ratios over a broad range of temperature for diesel and lean-burn gasoline applications. With an optimized space velocity of 8,300 hr-1, a 67% (by volume) Fe section followed by a 33% Cu section provided at least 80% NOx conversion from approximately 230°C to 640°C when evaluated with 500 ppm NO and NH3. To improve the lean lightoff performance of the SCR catalyst system during a cold start, a Cu SCR catalyst that was 1/4 as long as the rear Cu SCR catalyst was placed in front of the Fe SCR catalyst. When evaluated with an excess of NH3 (NH3/NO ratio of 2.2), the Cu+Fe+Cu SCR system had significantly improved lightoff performance relative to the Fe+Cu SCR system, although the front Cu SCR catalyst did decrease the NOx conversion at temperatures above 475°C by oxidizing some of the NH3 to N2 or NO.
Journal Article

Development of New TOYOTA FCHV-adv Fuel Cell System

2009-04-20
2009-01-1003
Since 1992, Toyota Motor Corporation (TMC) has been working on the development of fuel cell system technology. TMC is designing principal components in-house, including fuel cell stacks, high-pressure hydrogen storage tank systems, and hybrid systems. TMC developed the ‘02 model TOYOTA FCHV, the world-first market-ready fuel cell vehicle, and started limited lease of the vehicles in December 2002. In June 2008, TMC developed a new TOYOTA FCHV-adv which obtained vehicle type certification in Japan, and is currently available for leasing in Japan and the United States. In the development of the TOYOTA FCHV-adv, TMC has improved the cruising range and cold start/drive capability from the previous TOYOTA FCHV. The TOYOTA FCHV-adv has achieved an actual cruising range of over 500 km, which is equivalent to that of current gasoline vehicles. In addition, the TOYOTA FCHV-adv has proven starting/driving capability at -30°C temperature.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Disturbance of Electronics in Low-Earth Orbits by High Energy Electron Plasmas

2009-07-12
2009-01-2339
Electrical disturbances caused by charging of cables in spacecraft can impair electrical systems for long periods of time. The charging originates primarily from electrons trapped in the radiation belts of the earth. The model Space Electrons Electromagnetic Effects (SEEE) is applied in computing the transient charge and electric fields in cables on spacecraft at low to middle earth altitudes. The analysis indicated that fields exceeding dielectric breakdown strengths of common dielectric materials are possible in intense magnetic storms for systems with inadequate shielding. SEEE also computes the minimal shielding needed to keep the electric fields below that for dielectric breakdown.
Journal Article

Thermal Considerations for Meeting 20°C and Stringent Temperature Gradient Requirements of IXO SXT Mirror Modules

2009-07-12
2009-01-2391
The Soft X-Ray Telescope (SXT) is an instrument on the International X-Ray Observatory (IXO). Its flight mirror assembly (FMA) has a single mirror configuration that includes a 3.3 m diameter and 0.93 m tall mirror assembly. It consists of 24 outer modules, 24 middle modules and 12 inner modules. Each module includes more than 200 mirror segments. There are a total of nearly 14, 000 mirror segments. The operating temperature requirement of the SXT FMA is 20°C. The spatial temperature gradient requirement between the FMA modules is ±1°C or smaller. The spatial temperature gradient requirement within a module is ±0.5°C. This paper presents thermal design considerations to meet these stringent thermal requirements.
Journal Article

International Space Station United States Operational Segment Crew Quarters On-orbit vs. Design Performance Comparison

2009-07-12
2009-01-2367
The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. As many as four CQs can be installed in the Node 2 element to increase the ISS crew member size to six. The CQs provide crew members with private space that has enhanced acoustic noise mitigation, integrated radiation-reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack-sized CQ system has multiple crew member restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crew member to personalize his or her CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to Node 2 is described in this paper.
Journal Article

Sphere-To-Cone Mating – New Solution to Improve Brake Tube Connector Sealing Robustness

2009-10-11
2009-01-3024
Recently invented solutions (Canadian Patent 2593305 and United States Patent Applications 20090015008 and 20070194567) incorporate sphere-to-cone type of the interaction between sealing surfaces in a brake tube connector. An interaction of sphere-to-cone type has numerous advantages over one with a cone-to-cone type which is currently utilized in conventional automotive brake tube connectors. Incorporation of a sphere-to-cone interaction between the sealing surfaces dramatically improves connector's sealing robustness. Sphere-to-cone based connectors are resilient to the tube and seat axes misalignment. Correspondingly, sphere-to-cone based connectors have less variation of the securing torque and virtually no propensity to locked misalignment occurrence. The article analyzes another fundamental advantage of a sphere-to-cone mating over the conventional cone-to-cone one.
Journal Article

Stator Side Voltage Regulation of Permanent Magnet Generators

2009-11-10
2009-01-3095
Permanent magnet AC generators are robust, inexpensive, and efficient compared to wound-field synchronous generators with brushless exciters. Their application in variable-speed applications is made difficult by the variation of the stator voltage with shaft speed. This paper presents the use of stator-side reactive power injection as a means of regulating the stator voltage. Design-oriented analysis of machine performance for this mode of operation identifies an appropriate level of machine saliency that enables excellent terminal voltage regulation over a specified speed and load range, while minimizing stator current requirements. This paper demonstrates that the incorporation of saliency into the permanent magnet generator can significantly reduce the size of the reactive current source that is required to regulate the stator voltage during operation over a wide range of speeds and loads.
Journal Article

Improved Accuracy of Unguided Articulated Robots

2009-11-10
2009-01-3108
The effectiveness of serial link articulated robots in aerospace drilling and fastening is largely limited by positional accuracy. Unguided production robotic systems are practically limited to +/-0.5mm, whereas the majority of aerospace applications call for tolerances in the +/-0.25mm range. The precision with which holes are placed on an aircraft structure is affected by two main criteria; the volumetric accuracy of the positioner, and how the system is affected when an external load is applied. Production use and testing of off-the-shelf robots has highlighted the major contributor to reduced stiffness and accuracy as being error ahead of the joint position feedback such as backlash and belt stretch. These factors affect the omni-directional repeatability, thus limiting accuracy, and also contribute to deflection of the tool point when process forces are applied.
Journal Article

Application of Extension Evaluation Method in Development of Novel Eco-friendly Brake Materials

2009-10-11
2009-01-3019
Extenics is a new cross discipline to study rules and methods of solving contradictory problems in the real world. The basic concepts and theoretical frame of extenics are briefly introduced in this paper. Based on the merit of extenics, the extension evaluation method was applied to evaluate the brake materials according to a five-grade criterion established in this study. Considering the results computed by the original and simplified models, the similar conclusions were made: all four brake samples, marked A - D, were evaluated in the first grade based on the calculated dependence degrees, and sample B was judged as the best performing friction material with the highest dependence degree and the lowest wear rate.
Journal Article

Solution for Automated Drilling and Lockbolt Installation in Carbon Fiber Structures

2009-11-10
2009-01-3214
Manual drilling and Lockbolt installation in carbon fiber structures is a labor intensive process. To reduce man hour requirements while concurrently improving throughput and process quality levels BROETJE-Automation developed a gantry positioning system with high performance multi-function end effectors for this application. This paper presents a unique solution featuring fully automated drilling and Lockbolt installation (inclusive of automated collar installation) for the vertical tail plane (vertical stabilizer) of large commercial aircraft. A flexible and reconfigurable assembly jig facilitates high access of the end effectors and increases the equipment efficiency. The described system fulfils the demand for affordable yet flexible precision manufacturing with the capacity to handle different aircraft model panels within the work envelope.
Journal Article

Protection of the C-17 Airplane during Semi Prepared Runway Operations

2009-11-10
2009-01-3203
The C-17 airplane operates in some of the most challenging environments in the world including semi prepared runway operations (SPRO). Typical semi-prepared runways are composed of a compacted soil aggregate of sand, silt, gravel, and rocks. When the airplane lands or takes off from a semi-prepared runway, debris, including sand, gravel, rocks and, mud is kicked up from the nose landing gear (NLG) and the main landing gear (MLG) tires. As the airplane accelerates to takeoff or decelerates from landing touchdown, this airborne debris impacts the underbelly and any component mounted on the underbelly. The result is the erosion of the protective surface coating and damage to systems that protrude below the fuselage into the debris path. The financial burden caused by SPRO damage is significant due to maintenance costs, spares costs and Non-Mission Capable (NMC) time.
Journal Article

Effect of Injection Strategy on Cold Start Performance in an Optical Light-Duty DI Diesel Engine

2009-09-13
2009-24-0045
The present study investigates cold start at very low temperatures, down to −29 deg C. The experiments were conducted in an optical light duty diesel engine using a Swedish class 1 environmental diesel fuel. In-cylinder imaging of the natural luminescence using a high speed video camera was performed to get a better understanding of the combustion at very low temperature conditions. Combustion in cold starting conditions was found to be asymmetrically distributed in the combustion chamber. Combustion was initiated close to the glow plug first and then transported in the swirl direction to the adjacent jets. A full factorial study was performed on low temperature sensitivity for cold start. The effects of cooling down the engine by parts on stability and noise were studied. Furthermore, different injection strategies were investigated in order to overcome the limited fuel evaporation process at very low temperatures.
X