Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Advanced Product Quality Planning

This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Advanced product quality planning (APQP) is essential to improving the way companies develop products and services.  It is a standardized, universally accepted fundamental business strategy. This strategy is applicable to all types of organizations including manufacturing and service companies, schools, hospitals, and governmental agencies. The aim of APQP is to enable the organization to produce products and provide services focused on satisfying customer’s needs, wants, and expectations.  
Training / Education

Quality Function Deployment Transforming Voice of the Customer into Engineering Specifications

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Currently in the industry, especially within China, product requirement development is more of an experience-based process rather than a scientific methodology. This course addresses this issue and provides a more process-driven method for better requirement development through the Quality Function Deployment (QFD) methodology.  Real industrial examples are used to demonstrate how to systematically convert the voice of the customer data to engineering specifications using QFD.
Training / Education

PFMEA and the Control Plan - Overview and Application

The Process FMEA and Control Plan program introduces the basic concepts behind this important tool and provides training in how to conduct an effective PFMEA. First, the course explains what a PFMEA is and how it improves the long-term performance of your products, services and related processes by addressing process related failures. The role of the PFMEA in the overall framework of Quality Management System Requirements is explained as well as the role of the PFMEA in the Advanced Product Quality Planning (APQP) process. Additionally, the differences and relationships between the DFMEA and PFMEA are well defined.
Training / Education

DFMEA Overview and Application

During this DFMEA Overview and Application course, participants will be introduced to important FMEA concepts, the basic theory behind the concepts, then discuss how these concepts can be applied to the customer's design FMEA activities. Participant activities include: reading assignments, group discussions, exercises, building Block Diagrams as a group, and beginning a DFMEA on a customer’s product.
Training / Education

Introduction to ISO 90012015 and IATF 169492016

The concept of a Quality System’s approach to business has been employed successfully and sometimes not so successfully for several decades. The International Organization for Standardization (ISO) has been supplying standards that list the key elements/clauses and requirements for building and implementing Quality Systems for over 30 years. These standards are based on the relatively simple concepts of Total Quality Management (TQM), essential principals of management, and a “Process” approach. These standards have been revised several times over the years to make them more realistic and user friendly.
Training / Education

Design of Experiments - Basic Simplified Taguchi

Design of Experiments is a statistically based, structured approach to product or process improvement that will quickly yield significant increases in product quality and subsequent decreases in cost.  Products and processes can be designed to function with less variation and with less sensitivity to environmental factors or customer usage. While still maintaining high quality from a customer's viewpoint, products and processes can utilize lower cost materials and methods.  Specifications can be opened-up with wider tolerances while still maintaining high quality for customers.  
Training / Education

Fundamentals of Batteries for Mobility Applications

2024-09-09
How are batteries used in the mobility industry? This three-week hybrid course introduces how batteries fit into the energy context and provides the fundamental knowledge and state-of-the-art insights into battery technologies. It will cover the key role of batteries as a tool for energy storage, the main components and parameters that characterize a battery, and the electrochemical phenomena that lie behind battery operation.
Training / Education

Introduction to Battery Technology in BEVs, HEVs, and PHEVs

2024-06-20
This course explores the design and performance of battery technologies used in today’s battery-electric vehicles. It focuses on the skills required to define a battery pack design, how battery packs are manufactured, and tests required before entering the market. Participants will leave the course equipped with tools to understand vehicle battery specifications and be able to extract the useful information from the large volume of electric vehicle content published daily. It also defines and analyzes fundamentals of battery operation and performance requirements for HEV, PHEV, EREV and full electric vehicle applications.
Training / Education

Introduction to Hybrid and Electric Vehicle Battery Systems

2024-06-04
This course provides an introduction to the concepts of hybrid vehicles, their missions and role of batteries to meet requirements. Battery topics including limitations, trends in hybrid development, customer wants and needs, battery system development timelines, comparison of electrochemistries and safety will be examined. Current offerings, cost factors, pack design considerations and testing will also be reviewed. Participants will perform a battery pack analysis exercise using a real world application.
Training / Education

Safe Handling of High Voltage Battery Systems

2024-06-18
This course will introduce participants to the risks encountered in handling high voltage battery systems and their component parts. With the understanding of these risks, the course will then address how to raise risk awareness and then methods of dealing with those risks. The outcome of this course should be improved avoidance of personal injury, reduced risk of reputation loss, product liability actions and reduced risk of loss of property and time. Participants will have an opportunity to participate in a real world battery handling case study scenario in which they will identify solutions for potential risk situations.
Training / Education

Design of Experiments (DOE) for Engineers

2024-05-15
Design of Experiments (DOE) is a methodology that can be effective for general problem-solving, as well as for improving or optimizing product design and manufacturing processes. Specific applications of DOE include identifying proper design dimensions and tolerances, achieving robust designs, generating predictive math models that describe physical system behavior, and determining ideal manufacturing settings. This course utilizes hands-on activities to help you learn the criteria for running a DOE, the requirements and pre-work necessary prior to DOE execution, and how to select the appropriate designed experiment type to run.
Training / Education

Weibull-Log Normal Analysis Workshop

2024-05-14
RMS (Reliability-Maintainability-Safety-Supportability) engineering is emerging as the newest discipline in product development due to new credible, accurate, quantitative methods. Weibull Analysis is foremost among these new tools. New and advanced Weibull techniques are a significant improvement over the original Weibull approach. This workshop, originally developed by Dr. Bob Abernethy, presents special methods developed for these data problems, such as Weibayes, with actual case studies in addition to the latest techniques in SuperSMITH® Weibull for risk forecasts with renewal and optimal component replacement.
Standard

Combination Tail and Floodlamp for Industrial Equipment

2003-05-15
CURRENT
J94_200305
This SAE Standard provides performance and general design requirements and related test procedures for a combination tail and floodlamp for use on industrial wheeled equipment that may be operated on public roads.
Video

Fault-Tree Generation for Embedded Software Implementing Dual-Path Checking

2011-11-17
Given the fast changing market demands, the growing complexity of features, the shorter time to market, and the design/development constraints, the need for efficient and effective verification and validation methods are becoming critical for vehicle manufacturers and suppliers. One such example is fault-tree analysis. While fault-tree analysis is an important hazard analysis/verification activity, the current process of translating design details (e.g., system level and software level) is manual. Current experience indicates that fault tree analysis involves both creative deductive thinking and more mechanical steps, which typically involve instantiating gates and events in fault trees following fixed patterns. Specifically for software fault tree analysis, a number of the development steps typically involve instantiating fixed patterns of gates and events based upon the structure of the code. In this work, we investigate a methodology to translate software programs to fault trees.
Video

Strategies for ISO 26262 Functional Safety Compliance

2011-12-12
Software content within commercial vehicles is growing exponentially. Emissions requirements, multiplexed communications, hybrid-electric technologies, active suspensions and smart sensors are amongst the technologies driving the increase in embedded code. Presenter Christoph Braeuchle , MKS Software, Inc.
Video

Data Driven Testing for HIL Systems

2011-12-05
The amount of software, computation and logic embedded into the vehicle systems is increasing. Testing of complex real time embedded systems using Hardware in Loop (HIL) simulations across different vehicle platforms has been a challenge. Data driven testing enables a qualitative approach to test these complex vehicle systems. It consists of a test framework wherein the test logic and data are independent of the HIL test environment. The data comprises variables used for both input values and output verification values. This data is maintained in a database or in the form of tables. Each row defines an independent test scenario. The entire test data is divided into three categories, High, Medium and Low. This feature gives the advantage of leveraging the same set of test data from Unit Level Testing phases to the Integration Test phase in the V-Cycle of software development. A data driven test approach helps the reuse of tests across vehicle platforms.
Video

Commercial Vehicle Connector Challenges

2011-12-05
This session will explore connector concerns related to the needs of Commercial Vehicle Manufacturers and problems/opportunities from a connection system supplier perspective. It will look at differences in requirements for the global market, and their relation to local requirements. Presenter Robin D. Reed, Deutsch Industrial/LADD Industries
Video

Experience with Using Hardware-in-the-Loop Simulation for Validation of OBD in Powertrain Electronics Software

2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
Video

Impact of Model-Based Lithium-Ion Battery Control Strategy on Battery Sizing and Fuel Economy in Heavy-Duty HEVs

2011-12-05
Software usability is a quality attribute defined as ?the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specific context of use? (ISO 9241, 1998), usability is also referred to as ?quality in use? (ISO 14598, 1999). Presenter Anabell Beltran, Stoneridge Electronics North America
X