Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Training / Education

Introduction to Airframe Engineering Design for Manufacturing, Assembly and Automation

This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. Why is a design for manufacturing, assembly and automation so important? This introductory course on airframe engineering will cover the importance of design for manufacturing, assembly and automation in aerospace. It will review what the key drivers are for a “good” design and some of the key points for manufacturing and assembly of aircraft components. It will look at how an engineer can combine traditional technologies with new, cutting-edge technologies, to determine the best scenario for success.
Technical Paper

Computing Remaining Fatigue Life Under Incrementally Updated Loading Histories

2018-04-03
2018-01-0623
After manufacture, every military vehicle experiences a unique history of dynamic loads, depending on loads carried, missions completed, etc. Damage accumulates in vehicle structures and components accordingly, leading eventually to failures that can be difficult to anticipate, and to unpredictable consequences for mission objectives. The advent of simulation-based fatigue life prediction tools opens a path to Digital Twin based solutions for tracking damage, and for gaining control over vehicle reliability. An incremental damage updating feature has now been implemented in the Endurica CL fatigue solver with the aim of supporting such applications for elastomer components. The incremental updating feature is demonstrated via the example of a simple transmission mount component. The damage state of the mount is computed as it progresses towards failure under a series of typical loading histories.
Technical Paper

Actively Articulated Wheeled Architectures for Autonomous Ground Vehicles - Opportunities and Challenges

2023-04-11
2023-01-0109
Traditional ground vehicle architectures comprise of a chassis connected via passive, semi-active, or active suspension systems to multiple ground wheels. Current design-optimizations of vehicle architectures for on-road applications have diminished their mobility and maneuverability in off-road settings. Autonomous Ground Vehicles (AGV) traversing off-road environments face numerous challenges concerning terrain roughness, soil hardness, uneven obstacle-filled terrain, and varying traction conditions. Numerous Active Articulated-Wheeled (AAW) vehicle architectures have emerged to permit AGVs to adapt to variable terrain conditions in various off-road application arenas (off-road, construction, mining, and space robotics). However, a comprehensive framework of AAW platforms for exploring various facets of system architecture/design, analysis (kinematics/dynamics), and control (motions/forces) remains challenging.
Technical Paper

Influence of the distances between the axles in the vertical dynamics of a military vehicle equipped with magnetorheological dampers

2018-09-03
2018-36-0232
While traveling on any type of ground, the damper of a vehicle has the critical task of attenuating the vibrations generated by its irregularities, to promote safety, stability, and comfort to the occupants. To reach that goal, several passive dampers projects are optimized to embrace a bigger frequency range, but, by its limitations, many studies in semiactive and active dampers stands out by promoting better control of the vehicle dynamics behavior. In the case of military vehicles, which usually have more significant dimensions than the common ones and can run on rough or unpaved lands, the use of semi-active or active dampers reveals itself as a promising alternative. Motivated by that, the present study performs an analysis of the vertical dynamics of a wheeled military vehicle with four axles, using magnetorheological dampers. This study is made using a configuration of the distances between the axles of the vehicle, which is chosen from five available options.
Technical Paper

Warrior Injury Assessment Manikin Oblique Vertical Testing

2018-11-12
SC18-22-0008
Abstract - The Warrior Injury Assessment Manikin (WIAMan) was developed to assess injury in Live Fire Test and Evaluation (LFTE) and laboratory development tests of vehicles and vehicle technologies subjected to underbody blast (UBB) loading. While UBB events impart primarily vertical loading, the occupant location in the vehicle relative to the blast can result in some inherent non-vertical, or off-axis loading. In this study, the WIAMan Technology Demonstrator (TD) was subjected to 18 tests with a 350g, 5-ms time duration drop tower pulse using an original equipment manufacturer (OEM) energy attenuating seat in four conditions: purely vertical, 15° forward tilt, 15° rearward tilt, and 15° lateral tilt to simulate the partly off-axis loading of an UBB event. The WIAMan TD showed no signs of damage upon inspection. Time history data indicates the magnitude, curve shape, and timing of the response data were sensitive to the off-axis loading in the lower extremity, pelvis, and spine.
Book

National Automotive Center Technical Review

2000-11-30
The first issue of the National Automotive Center Technical Review, this report is a collection of technical papers developed by leading NAC engineers, scientists and industry partners to demonstrate the ongoing work to improve automotive performance, safety and endurance while reducing the cost of both military and civilian vehicles. Published by National Automotive Center. Distributed by SAE.
Technical Paper

VISION: Vehicle Infrared Signature Aware Off-Road Navigation

2024-04-09
2024-01-2661
Vehicle navigation in off-road environments is challenging due to terrain uncertainty. Various approaches that account for factors such as terrain trafficability, vehicle dynamics, and energy utilization have been investigated. However, these are not sufficient to ensure safe navigation of optionally manned ground vehicles that are prone to detection using thermal infrared (IR) seekers in combat missions. This work is directed towards the development of a vehicle IR signature aware navigation stack comprised of global and local planner modules to realize safe navigation for optionally manned ground vehicles. The global planner used A* search heuristics designed to find the optimal path that minimizes the vehicle thermal signature metric on the map of terrain’s apparent temperature. The local planner used a model-predictive control (MPC) algorithm to achieve integrated motion planning and control of the vehicle to follow the path waypoints provided by the global planner.
Standard

Wheels/Rims - Military Vehicles Test Procedures and Performance Requirements

2023-07-14
CURRENT
J1992_202307
This SAE Recommended Practice provides minimum performance requirements and uniform laboratory procedures for fatigue testing of disc wheels, demountable rims, and bolt-together divided wheels intended for normal highway use on military trucks, buses, truck-trailers, and multipurpose vehicles. Users may establish design criteria exceeding the minimum performance requirement for added confidence in a design. For other (non-military) wheels and rims intended for normal highway use on trucks and buses, refer to SAE J267. For wheels intended for normal highway and temporary use on passenger cars, light trucks, and multipurpose vehicles, refer to SAE J328. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. This document does not cover off-highway or other special application wheels and rims.
Standard

Automotive Gear Lubricants for Commercial and Military Use

2021-01-27
HISTORICAL
J2360_202101
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI).
Book

Hall-Scott: The Untold Story of a Great American Engine Maker

2007-01-25
Author Francis Bradford, a former Hall-Scott engineer, provides valuable resources and insight not available to any other Hall-Scott researcher. Well-illustrated with numerous photos, drawings, and memos, this fascinating book will be of interest to history buffs in the areas of aviation, rail, marine, trucks, buses, fire equipment, and industrial engines, and to World War and military historians.
Magazine

SAE Truck & Off-Highway Engineering: April 2018

2018-04-05
Connectivity takes center stage Telematic links have become the norm, helping fleet owners and operators improve efficiency and letting OEMs predict component failures. More power, less noise, fewer emissions These key attributes drive development of new generators both big and small. TARDEC pursues advanced power generation U.S. Army, GM collaborate on fuel-cell-generated electricity to power the vehicle's propulsion system and onboard electronics, while providing off-vehicle power via an Exportable Power Take-Off unit. Developing an alternative engine concept Ricardo's CryoPower engine leverages two unique combustion techniques for reduced emissions and fuel consumption-liquid nitrogen and split combustion. Long-haul trucking and stationary power generation will be the first beneficiaries of the technologies. Technology time-warp The road to autonomous driving has been under construction for decades, as showcased by SAE's Mobility History Committee at the 2018 WCX in Detroit.
Magazine

Tech Briefs: April 2018

2018-04-01
Laser Detecting Systems Enhancing Survivability and Lethality on the Battlefield Designing With Plastics for Military Equipment Engine Air-Brakes Paving the Way to Quieter Aircraft Nett Warrior Enhancing Battlefield Connectivity and Communications XPONENTIAL 2018 - An AUVSI Experience Communications in Space: A Deep Subject First Air-Worthy Metal-Printed RF Filter Ready for Takeoff Validation of Automated Prediction of Blood Product Needs Algorithm Processing Continuous Non-Invasive Vital Signs Streams (ONPOINT4) Using a combination of non-invasive sensors, advanced algorithms, and instruments built for combat medics could reduce hemorrhaging and improve survival rates. Calculation of Weapon Platform Attitude and Cant Using Available Sensor Feedback Successful development of mobile weapon systems must incorporate operation on sloped terrain.
X