Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Autonomous Vehicle System and Control Architecture

This 4-week virtual-only experience is conducted by leading experts in the autonomous vehicle industry and academia. You’ll develop an understanding of the fundamentals of AV architecture, including mechatronics, kinematics, and the sense-think-act framework in autonomous systems. The course builds a connection for how robotics are used in autonomous vehicles and provides you with demonstrations, procedures, and the skills necessary to program a robot with basic commands using the Robot Operating System (ROS).
Training / Education

The Principles and Applications of Powertrain Controls for the New Energy Vehicles

课程概述 Powertrain controls for NEVs are one of the most complex and highly confidential areas of NEV research and development.  This two-day course takes the seemingly complicated field of NEV powertrain controls and summarizes it into a few basic principles.  The latest and most popular NEV powertrains are also reviewed to illustrate these principles and the controls strategies used.  对于新能源汽车来说,动力总成控制一直以来都是最复杂的和高度机密的领域之一。在这两天的课程中,我们将把看似复杂的动力总成控制系统总结出几条基本规则,同时,通过对当今其他车型动力控制系统的案例分析,来把这些规则和原理进行融会贯通。
Training / Education

Intelligent Vehicles From Functional Framework to Vehicle Architecture

This course provides an overview of state-of-the-art intelligent vehicles, presents a systematic framework for intelligent technologies and vehicle-level architecture, and introduces testing methodologies to evaluate individual and integrated intelligent functions. Considering the increasing demand for vehicle intelligence, it is critical to gain an understanding of the growing variety of intelligent vehicle technologies and how they must function together effectively as a system.
Training / Education

Controller Area Network (CAN) for Vehicle Applications

2024-10-21
The Controller Area Network has become the standard of choice for most automotive manufacturers.  Approved for use as an ISO and EPA diagnostic network, its usage continues to grow.  This course covers the theory and use of the CAN protocol, and its applications in the automotive industry.  Details on how the CAN protocol and other standards (J2411, J2284, J1939, ISO 11898, etc.) complement each other will be presented. Participants will learn about CAN application layers; the latest J1939, J2284, J2411, and IDB standards, regulations, and implementation requirements; and details of device hardware and software interfaces.
Training / Education

Vehicle Architecture for Hybrid, Electric, Automated, and Shared Vehicle Design

2024-09-10
Electric and hybrid vehicle engineers and designers are faced with the important issue of how to adequately configure required powertrain system components to achieve needed performance, occupant accommodation, and operational objectives. This course enables participants to fully comprehend vehicle architectural/configurational design requirements to enable efficient structural design, effective packaging of required components, and efficient vehicle performance for shared and autonomous operation. The importance of integrating these design requirements with specific vehicle user needs and expectations will be emphasized.
Training / Education

Aircraft Cabin Safety and Interior Crashworthiness

2024-07-23
This two-day course will begin with a discussion of commercial off the shelf (COTS) test requirements.  The instructor will then guide participants through the various cabin interior emergency provisions and their requirements such as supplemental passenger oxygen, emergency equipment, seats, flammability, emergency exits, emergency lighting and escape path markings, and various other cabin interior systems.  
Training / Education

Fundamentals of High Voltage xEV, Safety, and PPE

2024-06-20
Do you know what personal protective equipment (PPE), tools, and instruments are needed to keep you safe around high voltage (HV) vehicles? Are you aware of how to protect yourself or your employees when working around high voltage systems and platforms? Safety is paramount when working around any type of high voltage. As electric vehicles (EV) and EV fleets become more prevalent, the critical need for OEMs, suppliers, companies, and organizations to provide comprehensive safety training for teams working with or around xEV systems and platforms increases.
Book

Honda R&D Technical Review April 2021

2021-04-01
Honda R&D Technical Review is a periodical containing research papers related to Honda R&D Center activities worldwide that cover automobile, motorcycle, power products, aircraft engine, and other fundamental technologies. Honda Motor offers a book for the April 2021 issue with 104 pages containing 12 papers focusing on the following latest topics: Technology for Prediction of Contactor Noise for Electric-powered Vehicle Batteries Reduction of Internal Resistance in High Capacity Lithium-ion Batteries with 3D Lattice-structured Electrode Predictive Technique for Seat Belt Submarining Injury by Triaxial Iliac Load Cell
Standard

COMMUNICATIONS MANAGEMENT UNIT (CMU) MARK 2

2019-11-26
CURRENT
ARINC758-4
This ARINC Standard specifies the ARINC 758 Mark 2 Communications Management Unit (CMU) as an on-board message router capable of managing various datalink networks and services available to the aircraft. Supplement 4 adds Ethernet interfaces, per ARINC Specification 664 Part 2. This will allow the CMU to communicate with IP based radio transceivers (e.g., L-Band Satellite Communication Systems (Inmarsat SwiftBroadband (SBB) and Iridium Certus), ACARS over IP, AeroMACS, etc.).
Standard

AIRCRAFT SOFTWARE COMMON CONFIGURATION REPORTING

2019-08-13
CURRENT
ARINC843-1
This standard defines a common configuration report format that can be retrieved from an aircraft for use by ground tools and maintenance personnel. Reports will be generated in Extensible Markup Language (XML) format and structured as defined by this document. Several optional elements and attributes are defined to allow flexibility for a given report. This standard provides aircraft manufacturers, regulatory agencies, and airlines a format standard for aircraft configuration reporting, and facilitates automated comparison of configuration data reports (e.g., authorized versus as flying, etc.).
Standard

AIRCRAFT DATA INTERFACE FUNCTION (ADIF)

2020-07-21
CURRENT
ARINC834-8
This document defines an Aircraft Data Interface Function (ADIF) developed for aircraft installations that incorporate network components based on commercially available technologies. This document defines a set of protocols and services for the exchange of aircraft avionics data across aircraft networks. A common set of services that may be used to access specific avionics parameters are described. The ADIF may be implemented as a generic network service, or it may be implemented as a dedicated service within an ARINC 759 Aircraft Interface Devices (AID) such as those used with an Electronic Flight Bag (EFB). Supplement 8 includes improvements in the Aviation Data Broadcast Protocol (ADBP), adds support for the Media Independent Aircraft Messaging (MIAM) protocol, and contains data security enhancements. It also includes notification and deprecation of the Generic Aircraft Parameter Service (GAPS) protocol that will be deleted in a future supplement.
Standard

AIRCRAFT DATA NETWORK, PART 1, SYSTEMS CONCEPTS AND OVERVIEW

2019-06-20
CURRENT
ARINC664P1-2
The purpose of this document is to provide an overview of data networking standards recommended for use in commercial aircraft installations. These standards provide a means to adapt commercially defined networking standards to an aircraft environment. It refers to devices such as bridges, switches, routers and hubs and their use in an aircraft environment. This equipment, when installed in a network topology, can optimize data transfer and overall avionics performance.
Standard

OBSOLESCENCE MANAGEMENT STRATEGIES FOR COMMERCIAL AIRCRAFT

2019-05-14
CURRENT
ARINC662-1
The purpose of this document is to establish guidelines that should be observed during initial design, production, and maintenance of aircraft components, and to present short-term and long-term strategies to minimize the costs and impacts associated with decreasing availability of components.
Standard

GUIDANCE FOR DISTRIBUTED RADIO ARCHITECTURES

2021-07-15
CURRENT
ARINC678
The purpose of this document is to evaluate Communication, Navigation, and Surveillance (CNS) Distributed Radio architectures and the feasibility of distributing the RF and systems processing sections to ensure the following: Reduce cost of equipment Reduce Size, Weight, and Power (SWaP) Ease of aircraft integration Growth capability built into the design Maintain or improve system availability, reliability, and maintainability It provides a framework to determine whether it is feasible to develop ARINC Standards that support CNS distributed radio architectures.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
CURRENT
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

INTERSYSTEM NETWORK INTEGRATION

2021-06-24
CURRENT
ARINC688
The purpose of this document is to provide guidelines for integrating previously standalone cabin systems such as cabin management systems, In-Flight Entertainment (IFE) systems, In-Flight Connectivity (IFC) systems, galley systems, surveillance systems, etc. Resource sharing between systems can reduce airline costs and/or increase functionality. But, as systems expose their internal resources to external systems, the risk of an intrusion that could degrade function and/or negatively expose the supplier’s or airline’s brand increases. This document provides a recommended IP networking design framework between aircraft systems to reduce the operational security threats while still supporting the necessary intersystem routing.
Standard

ONBOARD SECURE WI-FI NETWORK PROFILE STANDARD

2021-06-18
CURRENT
ARINC687
This document defines a standard implementation for strong client authentication and encryption of Wi-Fi-based client connections to onboard Wireless LAN (WLAN) networks. WLAN networks may consist of multi-purpose inflight entertainment system networks operating in the Passenger Information and Entertainment System (PIES) domain, dedicated aircraft cabin wireless networks or localized Aircraft Integrated Data (AID) devices operating in the Aircraft Information Services (AIS) domain. The purpose of this document is to focus on the client devices requiring connections to these networks such as electronic flight bags, flight attendant mobile devices, onboard Internet of Things (IoT) devices, AID devices (acting as clients) and mobile maintenance devices. Passenger devices are not within the focus of this document.
Standard

ROADMAP FOR IPV6 TRANSITION IN AVIATION

2020-06-19
CURRENT
ARINC686
ARINC Report 686 represents the consensus of industry to prepare a roadmap migration from IPv4 to IPv6. This document describes airline objectives (air and ground side when possible) towards the development and introduction of IPv6. There are three distinct elements considered: 1) the applications for addressing aspects 2) the communication network(s) over which the applications are running for the IP protocol level itself and associated features, and 3) the physical link(s) the network(s) interface.
X