Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Characterization of Li-Ion Phosphate (LiFePO4) HEV Battery Using HPPC Test

2021-09-15
2021-28-0121
Recently, Hybrid electric vehicles have become significant. Electric vehicle is still in its infancy while grappling with multiple solutions to its problem of range anxiety and heavy weight. It makes HEV the viable and intermediate solution which can facilitate the transition. The battery behaviour is grossly defined by its dependence on variation due to temperature change. Hence, this present work focuses on understanding thermal characterization & pure behaviour of the Li-Ion Phosphate (LiFePO4) P1-HEV battery using the HPPC test. This becomes imperative because of the varying driver demands and ambient temperatures over the use during the day. Thus, the current drawn from battery varies (different C rate) leading to heat generation (I2R heating) within the pack/individual cell. Cyclically, impacting the cell performance and battery cycle life.
Technical Paper

Failure of Li-Ion 18650 Cylindrical Cells Subjected to Mechanical Loading and Computational Model Development

2021-09-22
2021-26-0318
To enhance the crashworthiness of electric vehicles, designing the optimized and safer battery pack is very essential. The deformed battery cell can result in catastrophic events like thermal runaway and thus it becomes crucial to study the mechanical response of battery cell. The goal of the research is to experimentally investigate the effect of mechanical deformation on Lithium-ion battery cell. The paper thoroughly studies the phenomenon of short circuiting at the time of failure. Various experiments are carried on 18650 cylindrical cells (NCA chemistry) under custom designed fume hood. The setup captures the failure modes of battery cell. The loading conditions have been designed considering the very possible physical conditions during crash event. The study has been done for radial compression, semicircular indentation, hemispherical indentation, flat circular indentation and case of three-point bending.
Technical Paper

Evaluation of Cable Harness of an Electric Vehicle Powertrain through Simulation

2021-09-22
2021-26-0350
The Electric Vehicles (EV) or Hybrid Electric Vehicle (HEV) has a bunch of electrical/electronic components and its operation give rise to complicated EMI/EMC issues. The Power Electronics Module (PEM), comprising of DC-DC convertor/invertor and Battery Management Unit (BMU), is driving the motor to propel the vehicle. “Battery Pack Module” powers these units through cables. The fast switching of these circuit elements present in the system leads to noise propagation through the cables. These noise signals give rise to various Electromagnetic (EM) related issues in the cable harness of vehicle. It is essential that these cables should not interfere with other electronic components and also does not get effected by external EM disturbances.
Technical Paper

Smart and Compact Simulation Tool for Electric Vehicle Component Sizing

2021-09-22
2021-26-0419
Electric Vehicles (EVs), with its inherent advantage of zero tailpipe emissions, are gaining importance because of aggressive push from government not only to reduce air pollution but also to reduce dependency of fossil fuel. EVs and necessary charging infrastructure along with ‘connected’ technology is redefining mobility. Considering the fast growing EV market, it becomes important for an EV Powertrain Architect to design and develop a powertrain solution having low engineering efforts and satisfying business, market and regulatory requirements at a competitive price. This paper presents a compact, flexible, convenient and smart featured simulation tool for an EV Powertrain Architect for estimating the specifications of key powertrain components such as traction battery and electric motor. The proposed tool takes into consideration the end-user as well as the regulatory requirements of range, maximum speed, acceleration and gradeability.
Technical Paper

Aluminium for Curbing GHG Emissions in Indian Public Transport Buses

2020-04-14
2020-01-1050
Major cause of air pollution in the world is due to burning of fossil fuels for transport application; around 23% GHG emissions are produced due to transport sector. Likewise, the major cause of air pollution in Indian cities is also due to transport sector. Marginal improvement in the fuel economy provide profound impact on surrounding air quality and lightweighting of vehicle mass is the key factor in improving fuel economy. The paper describes robust and integrated approach used for design and development of lightweight bus structures for Indian city bus applications. An attempt is made to demonstrate the use of environment friendly material like aluminium in development of lightweight superstrutured city buses for India. Exercise involved design, development and prototype manufacturing of 12m Low Entry and 12m Semi Low Floor (SLF) bus models.
Technical Paper

Measurement of Mass Emissions from In-Use Two-Stroke Engine Three-Wheelers in South Asia

2002-05-06
2002-01-1681
Two-stroke engine two- and three-wheelers comprise over half of the total vehicle population in South Asia and, as such, are likely to be significant contributors to particulate air pollution in large cities. Because there are no standards for particulate emissions from two-stroke engine gasoline vehicles, there is very little data available quantifying their emission levels. This study examined the procedure for measuring particulate emissions from two-stroke engines which comprise predominantly liquid droplets, and measured mass emissions from in-use three-wheelers to examine the impact of the engine condition, lubricant type and quantity, and fuel quality. The results are compared to smoke emission levels.
Technical Paper

Development of Battery Management System for Hybrid Electric Two Wheeler

2018-04-03
2018-01-0430
The use of Hybrid Electric Vehicles (HEV) will become imperative to meet the emission challenges. HEV have two power sources-fossil fuels driven I.C. Engine and the battery based drive. Battery technologies have seen a tremendous development, and therefore HEV’s have been benefited. Even as the battery capacities have improved, maintaining and monitoring their health has been a challenge. This research paper uses open-source platform to build a BMS. The flexibility in the implementation of the system has helped in the rapid prototyping of the system. The BMS system was evaluated on a scaled-down electric toy car for its performance and sustainability. The BMS was evaluated for reverse polarity, protection against overcharge, short-circuit, deep discharge and overload on lead acid battery. It also includes temperature monitoring of the batteries. This proposed system is evaluated on the in-house HEV two-wheeler. The initial results are promising.
Technical Paper

ARAI Experiences on Conversion of Petrol (Gasoline) Engine Vehicles to CNG Operation

1995-02-01
950403
Two carburetted passenger cars of different makes, converted for CNG (Compressed Natural Gas) operation (in dual mode) and optimised by ARAI (The Automotive Research Association of India, Pune, India), were tested for vehicular performance. The respective engines were also mapped for performance, energy consumption and emission. The power loss in CNG mode was 7% & 15% and torque reduction was 21% & 15% in respective engines. There is considerable improvement in thermal efficiency and reduction of emission in the entire operating range. The vehicle performance on Chassis Dynamometer shows similar results. The second engine was also tested with a ceramic catalytic converter which gave 93% reduction in CO and 50% reduction in HC in major portion of operating range. 1100 CC car was also tested on the test track. Optimisation work included installation of ARAI mixer design.
Technical Paper

Mechanical and Aerodynamic Noise Prediction for Electric Vehicle Traction Motor and Its Validation

2017-01-10
2017-26-0270
With emission norms getting more and more stringent, the trend is shifting towards electric and hybrid vehicles. Electric motor replaces engine as the prime mover in these vehicles. Though these vehicles are quieter compared to their engine counterpart, they exhibit certain annoying sound quality perception. There is no standard methodology to predict the noise levels of these motors. Electric motor noise comprises of mainly three sources viz., Aerodynamic, Electromagnetic and Mechanical. A methodology has been developed to predict two major noise sources of electric motor out of the three above viz. Mechanical and Aerodynamic noise. These two noise sources are responsible for the tonal noise in an electric motor. Aerodynamic noise arises most often around the fan, or in the vicinity of the machine that behaves like a fan. This noise is predominant at higher motor speed and also in electric vehicle due to higher speed fluctuation.
Technical Paper

Design and Development of a Retrofit Solution for Converting a Conventional LCV into Parallel Hybrid Electric Vehicle

2019-01-09
2019-26-0117
In today’s scenario, the emission norms are getting stringent day by day due to an increased level of pollution. The world is shifting towards low carbon footprint which made it necessary to adopt efficient technologies with fewer emissions. The hybridization of vehicles has resulted in improved efficiency with lower emissions which can fulfil the near future emission norms. Retrofitting of hybrid components into a conventional IC engine vehicle is so far the best way to achieve better performance both economically and technologically. This research is primarily focused on the design and development of a novel retrofit solution of P3x architecture for the light commercial vehicle. This retrofit solution is different from other hybrid solutions in terms of powertrain. It contains an innovative add-on powertrain along with the existing powertrain. This additional powertrain consists of a pair of helical gears followed by a chain and sprocket as a coupler for traction motor.
Technical Paper

Aerodynamic Analysis of Passenger Car with Luggage Carrier (Roof Rack)

2019-01-09
2019-26-0067
Any change is vehicle exterior design, affects the aerodynamics characteristic. Generally different types of roof racks are attached on passenger vehicles to carry luggage which affects aerodynamic drag. The objective of this work is to perform aerodynamic analysis of ground vehicle with roof rack to investigate the change in drag coefficient. First, the aerodynamic analysis of a baseline passenger car model is performed with and without generic benchmarked roof rack at 100 kmph. Further analysis is carried out with different new designs of roof racks. Based on simulation result, a scaled down prototype model is fabricated and validated by using a wind tunnel test for optimum suitable case. The modelling of the vehicle is done in CATIA tool and simulation is carried out by using ANSYS Fluent.
Technical Paper

A Study to Address the Failure Mechanism of the Conventional 3-Point Restraint in Protecting the Far Side Occupant in a Rollover Accident

2015-01-14
2015-26-0161
Occupant motion in a vehicle rollover accident is a function of many factors. Some important ones are vehicle kinematics, position of the occupant in the vehicle, occupant size, ground topology and restraint usage. The far side belted occupants are more vulnerable than the near side occupants in a rollover accident as they have more energy as a result of their trailing and higher side of the vehicle. This outcome is attributable to the inadequate safety performance of the conventional single loop; B-pillar mounted D-ring restraints. Roof crush tends to displace the vehicle's B-pillar, resulting in D-Ring displacement which causes slack in the lap portion of the restraint. This slack enables centrifugal loads to move the far side occupant further away from the vehicle's instantaneous point of rotation. In this scenario, the presence of any ejection portal can result in an occupant becoming partially or fully ejected.
Technical Paper

Performance Evaluation of Chassis System for Converted Hybrid Electric Vehicle

2019-01-09
2019-26-0260
The technology development in automobiles is progressing towards providing smarter vehicles with increased efficiency and reduced emission. To cater this need, Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) are slowly thriving in Indian roads. Conversion of existing IC engine powered vehicle to HEV reduces complication in new vehicle development and also results in vehicles with increased efficiency and reduced emission. In order to convert the Conventional Vehicle to Hybrid Electric Vehicle, drive from electric motor was coupled with existing driveline by modifying mechanical systems suitably. Hybrid vehicle includes systems such as electric motors, inverters, high-voltage batteries and electronic control units, which are mounted in chassis members. Being a major load carrying member, any modifications in chassis system may affect the performance of vehicle, therefore it is necessary to evaluate the modified design of chassis members.
Technical Paper

Design and Optimization of Crash-Box of Passenger Vehicle to Enhance Energy Absorption

2019-03-25
2019-01-1435
Frontal crash is the most common type of accidents in passenger vehicles which results in severe injuries or fatalities. During frontal crash, some frontal vehicle body has plastic deformation and absorbs impact energy. Hence vehicle crashworthiness is important consideration for safety aspect. The crash box is one of the most important parts in vehicle frontal structure assembly which absorb crash energy during impact. In case of frontal crash accident, crash box is expected to be collapsed by absorbing crash energy prior to the other parts so that the damage to the main cabin frame and occupant injury can be minimized. The main objective of this work is to design and optimize the crash box of passenger vehicle to enhance energy absorption. The modeling of the crash box is done in CATIA V5 and simulations are carried out by using ANSYS. The results show significant improvement in the energy absorption with new design of the crash box and it is validated experimentally on UTM.
Technical Paper

Aerodynamic Analysis of Electric Passenger Car Using Wind Turbine Concept at Front End

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9%.
Technical Paper

Prediction of Thermal Comfort Inside a Midibus Passenger Cabin Using CFD and Its Experimental Validation

2015-01-14
2015-26-0210
This paper presents a methodology for predicting thermal comfort inside Midibus cabin with an objective to modify the Heating, Ventilation and Air Conditioning (HVAC) duct design and parametric optimization in order to have improved thermal comfort of occupant. For this purpose the bus cavity is extracted from baseline CAD model including fully seated manikins with various seating positions. Solar Load has been considered in the computational model and passenger heat load is considered as per BSR/ASHRAE 55-1992R standard. CFD simulation predicted the air temperature and velocity distribution inside passenger cabin of the baseline model. The experimental measurements have been carried out as per the guidelines set in APTA-BT-RP-003-07 standard. The results obtained from CFD and Experimental test were analysed as per EVS EN ISO7730 standard and calculated occupant comfort in terms of thermal comfort parameters like Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD).
Technical Paper

A Novel Method for Active Vibration Control of Steering Wheel

2019-01-09
2019-26-0180
Active control mainly comprises of three parts; sensor-detects the input disturbance, actuator -provide counter measures and control logic -processing of input disturbances and converting it into logical output. Lot of methods for active vibration control are available but this paper deals with active control of steering wheel vibrations of an LCV. A steering wheel is, one such component that directly transfers vibration to the driver. Active technique described here is implemented using accelerometer sensor, IMA (Inertial Mass Actuator) and feed forward Fx-LMS (Filtered reference Least Mean Square) control algorithm. IMA is a single-degree-of-freedom oscillator. To enable a control, IMA needs to be coupled to the structure at a single point, acting as an add-on to the passive system. Fx-LMS is a type of adaptive algorithm which is computationally simple and it also includes compensation for secondary path effects by using an estimate of the secondary path.
Technical Paper

Role of Silicone Based Thermal Encapsulants for 2&3W Battery Module Thermal Management Applications

2023-05-25
2023-28-1316
The Indian market for battery-powered electric vehicles (xEV) is growing exponentially in the coming years, fueled by tumbling lithium-ion battery prices and favorable government policies. Lithium-ion battery is leading in clean mobility ecosystem for electric vehicles. LiBs efficient and safe performance for tropical climatic conditions is one of the primary requirements for xEV to succeed in India. The performance of LiBs, however, is impacted due to ambient temperature as well as the heat generated within cell due to the load cycle electrochemical reaction. The acceptable operating temperature region for LiBs normally is between 20 °C to 45 °C and anything outside of this region will lead to degradation of performance and irreversible damages. Therefore, understanding the thermal behavior is very crucial for an efficient battery thermal management.
Journal Article

Investigation of Squeak and Rattle Problems in Vehicle Components by Using Simulation & Doe Techniques

2021-09-22
2021-26-0293
The automotive and related industries are concentrating their efforts on improving comfort by lowering engine, wind, and road noise and vibrations. However, as background noise levels decrease, the squeaks and rattles (S&R) generated by the vehicle's many components become more noticeable and distracting. As a result of the absence of a dominant noise source from a traditional petrol/diesel car, (S&R) noise becomes more dominant than other types of noise in electric vehicles. In this paper, we propose a novel simulation technique for developing a systematic approach to identifying and solving (S&R) problems in vehicle components/sub-assemblies during the primary stage of product development cycle, thus reducing the overall product development time. This paper will present a novel approach to comprehending various methods and Design of Experiments (DOE) techniques used to determine the root cause of (S&R) problems and to solve those using numerical methods.
Journal Article

Study to Compare CO2 Emissions from M1 Bharat Stage VI Passenger Vehicles at Chassis Dynamometer and Indian Real Traffic Conditions

2021-09-22
2021-26-0198
Bharat Stage VI (BS VI) emission norms are already introduced in India from 1st April 2020. The implementation of BS VI emission standards essentially brings Indian motor vehicle regulations on par with most stringent International standards. The BS VI regulation also mandated Real Driving Emission (RDE) measurement with objective to limit regulated pollutants esp. NOX & PN during real use of vehicle. For M1 passenger vehicles Carbon Dioxide (CO2) emissions measured in Lab is also regulated under CAFÉ (Corporate Average Fuel Economy) however, CO2 emission during Real on Road Driving is not regulated. So, this study was carried out to compare CO2 on real road traffic conditions with standard lab conditions. This study was done on a set of BS VI compliant vehicles with diverse characteristic such as engine capacity, fuel type.
X