Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Estimating Return on Investment for SAVI (a Model-Based Virtual Integration Process)

2012-03-21
The System Architecture Virtual Integration (SAVI) program is a collaboration of industry, government, and academic organizations within the Aerospace Vehicle System Institute (AVSI) with the goal of structuring a new integration process that relies on a single-truth architectural framework. The SAVI approach of Integrate, then Build provides a modern distributed development environment which arrests the propagation of requirements errors through the development life cycle. It does so by capturing design assumptions and shared properties of the system design in an authoritative, annotated architectural model. This reference model provides a common, analyzable framework for confirming that system requirements remain complete, consistent, and correct at all levels of system decomposition. Core concepts of SAVI include extensive use of model-based system engineering tools and use of a single-truth reference architectural model.
Video

A New Policy for COTS Selection: Overcome the DSM Reliability Challenge

2012-03-13
The increasing complexity of aerospace products and programs and the growing competitive pressure is facilitating the aggregation of small, medium and large enterprises of certain geographical regions into more integrated and collaborative entities (clusters). Clusters are by their same nature formed by heterogeneous companies, with huge differences not only in size but also for their core competences: such a diversity is a strength of the cluster, but it also increases its complexity. The purpose of this paper is to describe a benchmarking methodology that can be adopted to assess the performances of companies belonging to a cluster from different perspectives: economics and financials, competitive differentiators, specific know how, business strategies, production and logistic effectiveness, quality of core and supporting processes.
Video

Applying Critical-System Java to the Challenges of SMP Platforms

2012-03-21
In recent years, all major microprocessor manufacturers are transitioning towards the deploymenet of multiple processing cores on every chip. These multi-core architectures represent the industry consensus regarding the most effective utilization of available silicon resources to satisfy growing demands for processing and memory capacities. Porting off-the-shelf software capabilities to multi-core architectures often requires significant changes to data structures and algorithms. When developing new software capabilities specifically for deployment on SMP architectures, software engineers are required to address specific multi-core programming issues, and in the ideal, must do so in ways that are generic to many different multi-core target platforms. This talk provides an overview of the special considerations that must be addressed by software engineers targeting multi-core platforms and describes how the Java language facilitates solutions to these special challenges.
Video

Safety Critical Uses of Java

2012-03-21
The Java language is now the most popular programming language for the creation of new software capabilities. Its popularity has resulted in signficant economies of scale, with Java adopted as the primary language of instructional within many university curriculums, an abundance of reusable Java software components and Java software development tools available both from commercial suppliers and as open source technology, a large pool of competent Java developers from which to recruit staff, and a general willingness by senior staff software engineers to invest the effort required to learn this new programming language and technology. This talk describes the special approaches recommended for the use of Java in safety-critical deployments. The talk surveys the current state of the draft JSR-302 Safety Critical Java Specification and describes related experiences with commercially available technologies based on the constraints of early JSR-302 design discussions.
Video

Composite Predictive Engineering Studies - American Chemistry Council Plastics Division

2012-05-29
Since 2006 Oak Ridge National Labs (ORNL) and the Pacific Northwest National Labs (PNNL) have conducted research of injection molded long glass fiber thermoplastic parts funded by U.S. DOE. At DOE's request, ACC's Plastics Division Automotive Team and USCAR formed a steering committee for the National Labs, whose purpose was to provide industry perspective, parts materials and guidance in processing. This ACC affiliation enabled the plastics industry to identify additional key research requirements necessary to the success of long glass fiber injection molded materials and their use in the real world. Through further cooperative agreements with Autodesk Moldflow and University of Illinois, a new process model to predict both fiber orientation distribution and fiber length distribution is now available. Mechanical property predictive tools were developed and Moldflow is integrating these models into their software.
Video

5000 Hours Aging of THERBAN® (HNBR) Elastomers in an Aggressive Biodiesel Blend

2012-05-23
The need for light-weighting of automotive structures has spurred on a tremendous amount of interest in and development of low cost carbon fiber composite materials and manufacturing. This presentation provides a description of the commercial carbon fiber concept compared to traditional aerospace and specialty carbon fiber products. A specific update is presented on the development and commercialization of new low cost carbon fiber based on lignin / PAN precursor technology. The second focus of the presentation is on carbon fiber composite manufacturing processes, including carbon SMC, RTM, prepregs, and thermoplastic processes. Advantages and disadvantages of these processes are discussed, especially related to low cost manufacturing. Presenter George Husman, Zoltek Companies Inc.
Standard

TECHNIQUES FOR SUSPECT/COUNTERFEIT EEE PARTS DETECTION BY RADIATED ELECTROMAGNETIC EMISSION (REME) ANALYSIS TEST METHODS

2016-05-16
WIP
AS6171/14
The intent of this document is to define the methodology for suspect/counterfeit parts inspection using REME Analysis. The purpose of REME Analysis for suspect counterfeit part inspection is to detect misrepresentation or tampering of a part. REME Analysis can also potentially detect unintentional damage to the part resulting from improper removal of the part from assemblies, exposure to electrostatic discharge, exposure to radiation outside of acceptable limits (ionizing or high-power electromagnetic), or degradation. Improper removal of part from assemblies may include, but is not limited to, prolonged elevated temperature exposure during desoldering operations or mechanical stresses during removal. Degradation may include, but is not limited to, prolonged burn-in/testing, exposure to out-of-specification environmental conditions, or use outside of expected electrical tolerances.
Standard

AS6171 TECHNIQUES FOR SUSPECT/COUNTERFEIT EEE PART PACKAGING DETECTION BY VARIOUS TEST METHODS

2016-02-03
WIP
AS6171/15
Non-conformance and now Suspect counterfeit packaging represents a hazard to electrostatic discharge (ESD) sensitive devices or components through cross contamination during transport and storage while generating high voltage discharges to ESD sensitive devices during in shipping, the inspection process, handling and manufacturing. Several aerospace related issues involve long-term storage supplier non-conformance with antistatic foams, antistatic bubble, antistatic pink poly, vacuum formed antistatic polymers, Type I moisture barrier bags and Type III static shielding bags have posed issues. The late John Kolyer, Ph.D. (Boeing, Ret.) and Ray Gompf, P.E., Ph.D. (NASA-KSC, Ret.) were advocates in the utilization of a formalized physical testing material qualification process. Today, however, prime contractors and CMs rely heavily upon a visual inspection process for ESD packaging materials.
Standard

Technique for Suspect/Counterfeit EEE Parts Detection by Laser Scanning Microscopy (LSM) and Confocal Laser Scanning Microscopy (CLSM) Test Methods

2015-12-17
WIP
AS6171/17
This document defines capabilities and limitations of LSM and CLSM as they pertain to suspect/counterfeit EEE part detection. Additionally, this document outlines requirements associated with the application of LSM and CLSM including: operator training, sample preparation, various imaging techniques, data interpretation, calibration, and reporting of test results. This test method is primarily directed to analyses performed in the visible to near infrared range (approximately 400nm to 1100nm). The Test Laboratory shall be accredited to ISO/IEC 17025 to perform the LSM and CLSM Test Methods as defined in this standard. The Test Laboratory shall indicate in the ISO/IEC 17025 Scope statement, the specific method being accredited to: Option 1: All AS6171/17 Test Methods, or Option 2: All AS6171/17 Test Methods except CLSM. If SAE AS6171/17 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Thermomechanical Analysis (TMA) Test Methods

2016-12-09
WIP
AS6171/18
This test method provides the capabilities, limitations, and suggested possible applications of TMA as it pertains to detection of suspect/counterfeit EEE parts. Additionally, this document outlines requirements associated with the application of TMA including: equipment requirements, test sample requirements, methodology, control and calibration, data analysis, reporting, and qualification and certification.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Auger Electron Spectroscopy (AES) Test Method

2016-12-09
WIP
AS6171/19
This document defines capabilities and limitations of Auger Electron Spectroscopy (AES) as it pertains to detection of suspect/counterfeit EEE parts and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of AES including: operator training and requirements; sample preparation; data interpretation and reporting of data.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Gas Chromatography/Mass Spectrometry (GC/MS) Test Methods

2016-12-09
WIP
AS6171/21
This document defines capabilities and limitations of Gas Chromatography/Mass Spectrometry (GC/MS) as it pertains to detection of suspect/counterfeit EEE parts and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of GC/MS including: operator training; sample preparation; various sampling techniques; data interpretation; computerized spectral matching; equipment maintenance; and reporting of data. The discussion is limited to unit mass resolution spectrometers such as quadrupole systems and electron impact ionization.
Standard

Technique for Suspect/Counterfeit EEE Parts Detection by Scanning Electron Microscopy (SEM) including Energy Dispersive X-Ray Spectroscopy Test Methods

2017-06-13
WIP
AS6171/22
To define capabilities and limitations of SEM-EDS as it pertains to counterfeit detection of EEE parts and suggest possible applications to these ends. Additionally, this document outlines requirements associated with the application of SEM-EDS including: Operator training; Sample preparation; Data interpretation; Equipment maintenance; and Reporting of data. If SAE AS6171/22 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Assembly Detection by Various Test Methods

2017-09-22
WIP
AS6171/23
The intent of this test method is to describe high level processes to detect suspect/counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) Assemblies, covering both custom and military/commercial off-the-shelf (COTS) assemblies. This standard includes requirements for accreditation and certification of Laboratory and Laboratory personnel, and also, data collection, interpretation, and reporting as applicable to this test method. This standard covers EEE assemblies and includes electronic circuit card assemblies as defined under the definition for EEE Assembly and Electronic Circuit Card Assembly.
Standard

Counterfeit Materiel; Assuring Acquisition of Authentic and Conforming Materiel - Bearings

2020-04-21
WIP
AS6834
This document standardizes requirements for bearings: (a) supply chain management, procurement, inspection, parts management, and test/evaluation to assure the authenticity of bearings being acquired/used, and (b) response strategies when suspect or confirmed counterfeit bearings are discovered. Though developed primarily for critical application bearings, the document also may be applicable, at the discretion of the user, to other bearings with similar characteristics and applications. The bearings slash sheet is not intended to replace, conflict with, or duplicate requirements in quality system or AMS series material specs but rather to augment them with regards to counterfeit prevention and risk mitigation.
Standard

Counterfeit and Substandard Battery Risk Mitigation

2018-07-24
WIP
AS7492
The Counterfeit and Substandard Battery Risk Mitigation sub-committee, G21B, is proposed with the goal of addressing the significant risk presented by counterfeit and substandard batteries. A standard similar to the SAE AS6171 Anti-counterfeit standard will provide inspection methods and risk mitigation strategies, to help mitigate the risk for the Aerospace and Defense industries, to the benefit of all.
Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
X