Refine Your Search

Topic

Search Results

Journal Article

Comparative Study of Adaptive Algorithms for Vehicle Powertrain Noise Control

2016-03-14
2016-01-9108
Active noise control systems have been gaining popularity in the last couple of decades, due to the deficiencies in passive noise abatement techniques. In the future, a novel combination of passive and active noise control techniques may be applied more widely, to better control the interior sound quality of vehicles. In order to maximize the effectiveness of this combined approach, smarter algorithms will be needed for active noise control systems. These algorithms will have to be computationally efficient, with high stability and convergence rates. This will be necessary in order to accurately predict and control the interior noise response of a vehicle. In this study, a critical review of the filtered-x least mean square (FXLMS) algorithm and several other newly proposed algorithms for the active control of vehicle powertrain noise, is performed. The analysis examines the salient features of each algorithm, and compares their system performance.
Technical Paper

Dynamic Features and their Propagation in a Centrifugal Compressor Housing with Ported Shroud

2012-04-16
2012-01-0706
The goal of the presented research is to study the effective operational range for a centrifugal vaneless diffuser turbocharger compressor with ported shroud typically used in diesel engines. A turbocharger bench facility was designed and tested in order to define the performances of the compressor and to better understand the occurrence of instabilities in the housing. Specific emphasis was given to the low mass flow rate region of the compressor performance characteristics where instabilities occur with fluctuations that can be significantly large in the case of surge. Static pressures and dynamic pressure fluctuations were measured at the inlet, the outlet, as well as at different positions around the volute and diffuser sections of the compressor in order to assess the development and propagation of flow instabilities. The dynamic signature of the flow was measured along with the elaboration of the compressor mapping.
Technical Paper

Silicon Microsensors for Aerospace Condition Monitoring

1993-04-01
931359
This paper provides several examples of silicon “micromachined” semiconductor sensors with which the authors are involved for aerospace condition monitoring. This and related work in MEMS (Micro Electro Mechanical Systems) has the potential to revolutionize condition monitoring in aerospace condition and “health monitoring” by (1) moving “smart” electronics out to the sensor chip itself and (2) combining a vast quantity and types of, not only electronic, but micromechanical sensing schemes into the silicon chip . Precisely formed cantilevers, gears, valves, microplumbing and even micro motors of the cross-section of a human hair can be fabricated on a single silicon microchip. Silicon is an excellent mechanical material with a yield strength several times that of stainless steel. Also silicon has excellent thermal properties , whereas compatible silicon dioxide (which we typically use in connection with silicon microelectronics patterning) is virtually a thermal insulator.
Technical Paper

Development of a Photoconductive Gamma Dosimeter for Space Application

1994-04-01
941204
Demand for accurate and reliable gamma dosimetry in a radiation environment and the unsatisfactory performance of the existing devices has given rise to the need for a better gamma measurement system, capable of operating in a high dose rate environment and withstanding a high total dose. The concept of a new gamma dose measurement device based on the principle of photoconductivity has the potential of filling this void. Preliminary experiments and analyses indicated that the selected dosimeter materials exhibit photoconductivity in a useful range, responsive to changes in gamma dose rate. The initial Pyrex glass dosimeter appeared to suffer radiation damage at the relatively high dose rates employed (up to 0.116 Mega rads/hour). Quartz is now being studied as an alternative material.
Technical Paper

Microsensor Fusion Technology for Space Vehicle Reliability Enhancement

1994-04-01
941203
In this work, the goal of enhanced reliability through redundancy is explored. Two levels of fusion have been defined: the first is a fusion of sensors, redundant in both number and type, and the second is a statistical fusion of the resulting data at a software level. An intermediate preprocessing level is required to connect both fusions. The various types of sensors which are included are bulk micromachined flow, pressure and hydrogen sensors and a thin film poly-crystalline silicon temperature sensor. Individual sensors have been fabricated and packaged in arrays. Associated preprocessing has been designed to be able to handle all of the signals coming from each sensor and prepare them for statistical analysis. Data fusion algorithms have been written and tested.
Technical Paper

SSME Parameter Modeling with Neural Networks

1994-04-01
941221
The High Pressure Oxidizer Turbine (HPOT) discharge temperature of the Space Shuttle Main Engine (SSME) was estimated using Radial Basis Function Neural Networks (RBFNN) during the startup transient. Estimation was performed for both nominal engine operation and during simulated input sensor failures. The K-means clustering algorithm was used on the data to determine the location of the basis function centers. The performance of the RBFNN is compared with that of a feedforward neural network trained with the Quickprop learning algorithm.
Technical Paper

Generalization of an Automated Visual Inspection System (AVIS)

1994-04-01
941219
Efforts have been made to utilize Al constructs to identify flaws in the Space Shuttle Main Engine (SSME) faceplate regions. In order to expand the applicability of these algorithms to a larger problem domain, the automatic visual inspection system(AVIS) has been modified to enable a user with little or no image processing background to define a system capable of identifying flaws on a given set of imagery. This system requires the user to simply identify flawed regions and the selection of processing and feature descriptors is performed automatically. This paper explicates the motivations, definitions, and performance issues associated with the AVIS paradigm.
Technical Paper

SiC Devices for Space Electronics: Phase I - High Voltage, Temperature Hard Contacts

1994-04-01
941227
High voltage Schottky diodes have been fabricated on 3C-SiC films grown on Si substrates. A Ni metallization process has been developed to fabricate both rectifying and ohmic contacts to SiC by controlling the post-annealing temperature. A high voltage (>150V) breakdown has been obtained at room temperature from the SiC Schottky diode. The Ni-SiC Schottky junction shows a thermal resistance for temperatures as high as 600°C. This technology has good potential for monolithic integration of SiC high power devices and Si integrated circuits.
Technical Paper

Optical Fiber Coupled Sensors Integrating Optical Waveguides and Micromechanical Structures on Silicon

1994-04-01
941205
Electrically passive optical sensors have been formed using optical waveguides and micromachined-micromechanical structures on silicon substrates. We present recent results on an interferometric pressure sensor where pressure-induced strain in a micromachined diaphragm alters the path length of an optical channel waveguide ring resonator. Pressure is detected as a change in the resonant condition of the ring and found to vary linearly over a range of -100 to 400 kPa with a sensitivity of 0.0094 rad/kPa. Problems with attaching this sensor for testing will be discussed. Our second device is an intensity-type accelerometer utilizing a micromachined cantilever beam. Light transmission across a gap between two channel waveguides, one located on a beam bent by acceleration and another which remains fixed, is measured optically. We show preliminary measurements of the coupling between two closely spaced waveguide sections which agree with overlap integral calculations.
Technical Paper

Design of a Dependable Systems Knowledge Base

1994-04-01
941218
Building and operating dependable systems is fundamental to many critical applications, such as designing integrated hardware and software systems for vehicles or satellites. Dependable systems techniques, methods, and tools are developed and used by researchers and practitioners working in widely varying disciplines. In order to provide a unifying framework for the successful dissemination and sharing of dependability results, the development of a dependable systems knowledge base is underway.1 Two database support subsystems are under development: one that manages the storage and retrieval of document information, as well as communicating between the user interface layer and the physical database layer, and another that manages the lexicon of dependability terminology for the user interface layer. The system will provide access to information in a sophisticated, intelligent manner that enables a human user to function more effectively in learning and decision-making capacities.
Technical Paper

Time Scale Re-Sampling to Improve Transient Event Averaging

1997-05-20
972005
As the drive to make automobiles more noise and vibration free continues, it has become necessary to analyze transient events as well as periodic and random phenomena. Averaging of transient events requires a repeatable event as well as an available trigger event. Knowing the exact event time, the data can be post-processed by re-sampling the time scale to capture the recorded event at the proper instant in time to allow averaging. Accurately obtaining the event time is difficult given the sampling restrictions of current data acquisition hardware. This paper discusses the ideal hardware needed to perform this type of analysis, and provides analytical examples showing the transient averaging improvements using time scale re-sampling. These improvements are applied to noise source identification of a single transient event using an arrayed microphone technique. With this technique, the averaging is performed using time delays between potential sources and microphones in the array.
Technical Paper

Predictive Monitoring and Failure Prevention of Vehicle Electronic Components and Sensor Systems

2006-04-03
2006-01-0373
Vehicle electronics and sensor systems have become indispensable parts in providing safety, comfort, personal communication mobility and many other advanced functions in today's vehicles. As a result, reliability requirements for these critical parts have become extremely important. To meet these requirements, more advanced technologies and tools for degradation monitoring and failure prevention are needed. Currently, the development of diagnostics and prognostics techniques, which employ accurate degradation quantification by appropriate sensor selection, location decision, and feature selection and feature fusion, still remains a vital and unsolved issue. This paper addresses several realistic concerns of failure prevention in vehicle electronics and sensor systems. A unified monitoring and prognostics approach that prevents failures by analyzing degradation features, driven by physics-of-failure, is suggested as a general framework to overcome the unsolved challenge.
Technical Paper

Driveline NVH Modeling Applying a Multi-subsystem Spectral-based Substructuring Approach

2005-05-16
2005-01-2300
A new multi-level substructuring approach is proposed to predict the NVH response of driveline systems for the purpose of analyzing rear axle gear whine concern. The fundamental approach is rooted in the spectral-based compliance coupling theory for combining the dynamics of two adjacent subsystems. This proposed scheme employs test-based frequency response functions of individual subsystems, including gear pairs, propshaft, control arms and axle tube, in free-free state as sequential building blocks to synthesize the complete system NVH response. Using an existing driveline design, the salient features of this substructuring approach is demonstrated. Specifically, the synthesized results for the pinion-propshaft assembly and complete vehicle system are presented. The predictions are seen to be in excellent agreement with the experimental data from direct vehicle measurements.
Technical Paper

Human Centered Manufacturing: a Necessity for Enhancing Productivity and Competitiveness

1999-04-20
1999-01-1605
This paper argues in favor of a human-centered (anthropocentric) approach to modern manufacturing. The bases for these arguments are: (a) worker deskilling and creativity issues, (b) economics, and (c) unresolved problems in automation, such as software reliance and costs. Detailed arguments are avoided owing to space limitations. Finally, some issues confronting human-centered manufacturing are raised.
Technical Paper

Evaluation of Sensors for Noise Path Analysis Testing

1999-05-17
1999-01-1859
Test sensors are evaluated for noise path analysis applications. Newly developed ICP™ piezo-electric strain gages are used with accelerometers and microphones in a conventional noise path analysis test on the front body/suspension attachment points of a vehicle. In a less conventional application, a steering knuckle is converted into a 6-DOF force transducer using an array of strain gages and using an array of 3-DOF load cells. The two sensor arrays are both calibrated with a 6-DOF load cell. The result is an estimate of the three translation force and three moment operating inputs entering the steering knuckle from the wheel.
Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Technical Paper

Numerical Flow Analysis of a Centrifugal Compressor with Ported and without Ported Shroud

2014-04-01
2014-01-1655
Turbochargers are commonly used in automotive engines to increase the internal combustion engine performance during off design operation conditions. When used, a most wide operation range for the turbocharger is desired, which is limited on the compressor side by the choke condition and the surge phenomenon. The ported shroud technology is used to extend the operable working range of the compressor, which permits flow disturbances that block the blade passage to escape and stream back through the shroud cavity to the compressor inlet. The impact of this technology on a speed-line at near optimal operation condition and near surge operation condition is investigated. A numerical study investigating the flow-field in a centrifugal compressor of an automotive turbocharger has been performed using Large Eddy Simulation. The wheel rotation is handled by the numerically expensive sliding mesh technique. In this analysis, the full compressor geometry (360 deg) is considered.
Technical Paper

Joining of a PdCr Resistance Strain Gauge to Inconel 718 Using an Infrared Process

1994-04-01
941201
Joining of a PdCr Strain Gage with a Hastelloy X carrier shim to Inconel by a rapid infrared processing technique has been investigated at 1150 °C using a nickel based brazing alloy AMS 4777, Ni-7Cr-3Fe-3.2B-4.5Si-.06C in wt%. The effects of the infrared joining parameters on the joint and base material microstructure, joint shear strength, and delamination tendency of the PdCr gage was investigated. Results show that the joint shear strength is as high as 503 MPa when processed at approximately 1150 °C for 120 seconds. Microstructural examinations of the joint with both an optical microscope and a scanning electron microscope indicate that good wetting exists between the brazing alloy with both the Hastelloy X and Inconel 718. And, the Hastelloy X and Inconel 718 exhibits no noticeable change in microstructure due to the rapid processing cycle of the infrared heating process while the stabilized PdCr wire gage shows little change in resistance.
Technical Paper

Control of Powertrain Noise Using a Frequency Domain Filtered-x LMS Algorithm

2009-05-19
2009-01-2145
An enhanced, frequency domain filtered-x least mean square (LMS) algorithm is proposed as the basis for an active control system for treating powertrain noise. There are primarily three advantages of this approach: (i) saving of computing time especially for long controller’s filter length; (ii) more accurate estimation of the gradient due to the sample averaging of the whole data block; and (iii) capacity for rapid convergence when the adaptation parameter is correctly adjusted for each frequency bin. Unlike traditional active noise control techniques for suppressing response, the proposed frequency domain FXLMS algorithm is targeted at tuning vehicle interior response in order to achieve a desirable sound quality. The proposed control algorithm is studied numerically by applying the analysis to treat vehicle interior noise represented by either measured or predicted cavity acoustic transfer functions.
Journal Article

Optimal Pressure Based Detection of Compressor Instabilities Using the Hurst Exponent

2017-03-28
2017-01-1040
The compressor surge line of automotive turbochargers can limit the low-end torque of an engine. In order to determine how close the compressor operates to its surge limit, the Hurst exponent of the pressure signal has recently been proposed as a criterion. The Hurst exponent quantifies the fractal properties of a time series and its long-term memory. This paper evaluates the outcome of applying Hurst exponent based criterion on time-resolved pressure signals, measured simultaneously at different locations in the compression system. Experiments were performed using a truck-sized turbocharger on a cold gas stand at the University of Cincinnati. The pressure sensors were flush-mounted at different circumferential positions at the inlet of the compressor, in the diffuser and volute, as well as downstream of the compressor.
X